Hamiltonian structure of compartmental epidemiological models.

Physica D

Departamento de Física, Universidad de Burgos, 09001 Burgos, Spain.

Published: December 2020

Any epidemiological compartmental model with constant population is shown to be a Hamiltonian dynamical system in which the total population plays the role of the Hamiltonian function. Moreover, some particular cases within this large class of models are shown to be bi-Hamiltonian. New interacting compartmental models among different populations, which are endowed with a Hamiltonian structure, are introduced. The Poisson structures underlying the Hamiltonian description of all these dynamical systems are explicitly presented, and their associated Casimir functions are shown to provide an efficient tool in order to find exact analytical solutions for epidemiological models, such as the ones describing the dynamics of the COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375975PMC
http://dx.doi.org/10.1016/j.physd.2020.132656DOI Listing

Publication Analysis

Top Keywords

hamiltonian structure
8
epidemiological models
8
hamiltonian
5
structure compartmental
4
compartmental epidemiological
4
models
4
models epidemiological
4
epidemiological compartmental
4
compartmental model
4
model constant
4

Similar Publications

A topological constraint, characterized by the Casimir invariant, imparts non-trivial structures in a complex system. We construct a kinetic theory in a constrained phase space (infinite-dimensional function space of macroscopic fields), and characterize a self-organized structure as a thermal equilibrium on a leaf of foliated phase space. By introducing a model of a grand canonical ensemble, the Casimir invariant is interpreted as the number of topological particles.

View Article and Find Full Text PDF

Moiré superlattices formed in van der Waals (vdW) bilayers of 2D materials provide an ideal platform for studying previously undescribed physics, including correlated electronic states and moiré excitons, owing to the wide-range tunability of their lattice constants. However, their crystal symmetry is fixed by the monolayer structure, and the lack of a straightforward technique for modulating the symmetry of moiré superlattices has impeded progress in this field. Herein, a simple, room-temperature, ambient method for controlling superlattice symmetry is reported.

View Article and Find Full Text PDF

We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation.

View Article and Find Full Text PDF

Triplet-triplet energy transfer (TEnT) is of particular interest in various photochemical, photobiological, and energy science processes. It involves the exchange of spin and energy of electrons between two molecular fragments. Here, quasi-diabatic self-consistent field solutions were used to obtain the diabatic states involved in TEnT.

View Article and Find Full Text PDF

Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!