A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regional-scale monitoring of underwater and dry ground subsidence in high phreatic areas of North China Plain. | LitMetric

Land subsidence monitoring provides information required when developing land use plans and allows for proactive management of subsidence issues. However, it has been challenging to accurately detect land subsidence areas, especially those under waterbodies. This study evaluated the applicability of integrated use of the optical Landsat-8 OLI and microwave Sentinel-1A TOPSAR imagery to delineate subsidence areas and quantify subsidence rates in a typical coal mining area of North China Plain. An Enhanced Modified Normalized Difference Water Index (E-MNDWI) was combined with Short BAseline Subset-Interferometric Synthetic Aperture Radar (SBAS-InSAR) image to monitor underwater and dry ground subsidence. The results demonstrated that the method could delineate underwater and dry ground subsidence and quantify its rates accurately. The proposed method estimated subsidence area corresponded to 34.8% (16.7 km2) of the study area. The size of underwater subsidence areas was substantial and accounted for 43.7% of the subsidence areas. Seasonal underwater subsidence areas were generally distributed in the vicinity of perennial ones. Dry ground subsidence covered 9.4 km2 of the study area and generally occurred in urban and rural residential areas with the maximum subsidence of up to 80.1 mm/year. This study demonstrates the efficiency and capacity of integrating optical and microwave images to monitor the subsidence progresses, which thus can help develop effective rehabilitation policy and strategy to mitigate the impacts of land subsidence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444814PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237878PLOS

Publication Analysis

Top Keywords

subsidence areas
20
dry ground
16
subsidence
16
ground subsidence
16
underwater dry
12
land subsidence
12
north china
8
china plain
8
km2 study
8
study area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!