A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative Classification of 3D Collagen Fiber Organization From Volumetric Images. | LitMetric

Collagen fibers in biological tissues have a complex 3D organization containing rich information linked to tissue mechanical properties and are affected by mutations that lead to diseases. Quantitative assessment of this 3D collagen fiber organization could help to develop reliable biomechanical models and understand tissue structure-function relationships, which impact diagnosis and treatment of diseases or injuries. While there are advanced techniques for imaging collagen fibers, published methods for quantifying 3D collagen fiber organization have been sparse and give limited structural information which cannot distinguish a wide range of 3D organizations. In this article, we demonstrate an algorithm for quantitative classification of 3D collagen fiber organization. The algorithm first simulates five groups, or classifications, of fiber organization: unidirectional, crimped, disordered, two-fiber family, and helical. These five groups are widespread in natural tissues and are known to affect the tissue's mechanical properties. We use quantitative metrics based on features such as preferred 3D fiber orientation and spherical variance to differentiate each classification in a repeatable manner. We validate our algorithm by applying it to second-harmonic generation images of collagen fibers in tendon and cervix tissue that has been sectioned in specified orientations, and we find strong agreement between classification from simulated data and the physical fiber organization. Our approach provides insight for interpreting 3D fiber organization directly from volumetric images. This algorithm could be applied to other fiber-like structures that are not necessarily made of collagen.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3018939DOI Listing

Publication Analysis

Top Keywords

fiber organization
28
collagen fiber
16
collagen fibers
12
quantitative classification
8
collagen
8
classification collagen
8
fiber
8
organization
8
volumetric images
8
images collagen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!