Radiotherapy is a crucial component of treatment for ∼70% of all cancer patients. The identification of effective biomarkers of radiosensitivity (RS) is a fundamental goal of radiobiology. The authors hypothesize that the RS of human normal and tumoral cells is correlated by the level of expression of TRIM29, TRIM37, TRIM44, and β-catenin genes. Clonogenic assay was performed and RS of four cell lines was determined by survival fraction at 2 Gy. To determine the level of gene expression 6 and 24 h after irradiation, RNA was extracted from each cell line, and expression of the above-mentioned genes in cell lines with different RS was determined by real-time polymerase chain reaction (PCR). The clonogenic assay showed that human dermal fibroblasts (fibroblast) and HT-29 (colorectal) cells are radioresistant, while human foreskin fibroblasts (fibroblast) and QU-DB (lung) cells are radiosensitive. Analysis of the real-time PCR data, 6 h after irradiation, showed that the increase and decrease of the expression of TRIM29 and TRIM37 genes were directly correlated with the RS of normal and tumor cells. At 24 h postirradiation, a considerable difference was only observed in the expression of the β-catenin gene. This study showed that the TRIM29 and TRIM37 genes are involved in the cell response to radiation and proposed that these genes may be biomarkers for predicting RS in normal and tumoral cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cbr.2020.3915DOI Listing

Publication Analysis

Top Keywords

trim29 trim37
16
expression trim29
12
cell lines
12
trim37 trim44
8
trim44 β-catenin
8
β-catenin genes
8
normal tumoral
8
clonogenic assay
8
lines determined
8
fibroblasts fibroblast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!