Silver nanowires have been widely adopted as nanofillers in composite materials used for various applications. Electrical and thermal properties of these composites are critical for proper device operation, and highly depend on transport through the nanowires and their contacts, yet studies on silver nanowires have been limited to one or two samples and no solid data have been reported for individual contacts. Through systematic measurements of silver nanowires of different sizes, we show that the Lorenz number increases with decreasing wire diameter and has a higher value at wire contacts. Examination of the corresponding electrical and thermal conductivities indicates that these changes are due to contributions of phonons that become more important as a result of elastic stiffening. The derived contact thermal conductance per unit area between silver nanowires is ∼10 times that between carbon nanotubes. This helps to explain the more significant thermal conductivity enhancement of silver nanowires-based composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c02014 | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia.
Technological development has led to the need for materials able to block electromagnetic waves (EMWs) emitted from various devices. EMWs could negatively affect the working performance and lifetime of multiple instruments and measuring devices. New EMW shielding materials are being developed, while among nanomaterials, graphene-based composites have shown promising features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!