AI Article Synopsis

Article Abstract

Combinatorial biosynthesis with fungal polyketide synthases (PKSs) promises to produce unprecedented bioactive "unnatural" natural products (uNPs) for drug discovery. Genome mining of the dothideomycete uncovered a collaborating highly reducing PKS (hrPKS)-nonreducing PKS (nrPKS) pair. These enzymes produce trace amounts of rare S-type benzenediol macrolactone congeners with a phenylacetate core in a heterologous host. However, subunit shuffling and domain swaps with voucher enzymes demonstrated that all PKS domains are highly productive. This contradiction led us to reveal novel programming layers exerted by the starter unit acyltransferase (SAT) and the thioesterase (TE) domains on the PKS system. First, macrocyclic vs linear product formation is dictated by the intrinsic biosynthetic program of the TE domain. Next, the chain length of the hrPKS product is strongly influenced by the off-loading preferences of the nrPKS SAT domain. Last, TE domains are size-selective filters that facilitate or obstruct product formation from certain priming units. Thus, the intrinsic programs of the SAT and TE domains are both part of the extrinsic program of the hrPKS subunit and modulate the observable metaprogram of the whole PKS system. Reconstruction of SAT and TE phylogenies suggests that these domains travel different evolutionary trajectories, with the resulting divergence creating potential conflicts in the PKS metaprogram. Such conflicts often emerge in chimeric PKSs created by combinatorial biosynthesis, reducing biosynthetic efficiency or even incapacitating the system. Understanding the points of failure for such engineered biocatalysts is pivotal to advance the biosynthetic production of uNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659983PMC
http://dx.doi.org/10.1021/jacs.0c07050DOI Listing

Publication Analysis

Top Keywords

chain length
8
polyketide synthases
8
combinatorial biosynthesis
8
pks system
8
product formation
8
pks
6
domains
5
intrinsic extrinsic
4
extrinsic programming
4
product
4

Similar Publications

The efficiency of kinase inhibiting cancer therapeutics is often limited by their poor solubility in water. PEGylation is one possible strategy to improve the solubility of the drug, however, means to cleave these after reaching the target is important to make use of the therapeutic effects of the native drug. Moreover, the length of the PEG chains will have an effect on the solubility and binding.

View Article and Find Full Text PDF

Background: Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone. Sustanon, dissolved in peanut oil, is an AAS used by athletes to build muscle mass. This study aims to examine the effects of Sustanon on male reproductive health.

View Article and Find Full Text PDF

Planar solid phase extraction for chlorinated paraffin analysis - irradiation chamber for standardized derivatization on planar thin-layers.

J Chromatogr A

January 2025

Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany. Electronic address:

As an established analytical method, high-performance thin-layer chromatography (HPTLC) offers powerful capabilities. This study focused on its application to analyze chlorinated paraffins (CP) by planar solid phase extraction (pSPE). Based on previous work, an irradiation chamber was developed to investigate the derivatization process on planar thin-layers and ensure a robust and reproducible analysis.

View Article and Find Full Text PDF

Polydopamine-assisted ion-mediated hyaluronic acid grafting for effective construction of hemocompatible platform with cancer cell recognition.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China. Electronic address:

Surfaces capable of specific biomolecule recognition are essential for cancer theranostics, biosensing, and tissue engineering. However, current grafting methods, critical for dictating the recognition efficiency and biocompatibility of biomaterials, especially hydrophilic polymers, struggle to balance high grafting density with ease of implementation. In pursuit of a simple, effective, and versatile solution, we introduced a polydopamine (PDA)-assisted Ca-mediated grafting strategy using hyaluronic acid (HA) as a model material.

View Article and Find Full Text PDF

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!