Objective: Disturbed sleep is common in epilepsy. The direct influence of nocturnal epileptic activity on sleep fragmentation remains poorly understood. Stereo-electroencephalography paired with polysomnography is the ideal tool to study this relationship. We investigated whether sleep-related epileptic activity is associated with sleep disruption.
Methods: We visually marked sleep stages, arousals, seizures, and epileptic bursts in 36 patients with focal drug-resistant epilepsy who underwent combined stereo-electroencephalography/polysomnography during presurgical evaluation. Epileptic spikes were detected automatically. Spike and burst indices (n/sec/channel) were computed across four 3-second time windows (baseline sleep, pre-arousal, arousal, and post-arousal). Sleep stage and anatomic localization were tested as modulating factors. We assessed the intra-arousal dynamics of spikes and their relationship with the slow wave component of non-rapid eye-movement sleep (NR) arousals.
Results: The vast majority of sleep-related seizures (82.4%; 76.5% asymptomatic) were followed by awakenings or arousals. The epileptic burst index increased significantly before arousals as compared to baseline and postarousal, irrespective of sleep stage or brain area. A similar pre-arousal increase was observed for the spike index in NR stage 2 and rapid eye-movement sleep. In addition, the spike index increased during the arousal itself in neocortical channels, and was strongly correlated with the slow wave component of NR arousals (r = 0.99, p < 0.0001).
Interpretation: Sleep fragmentation in focal drug-resistant epilepsy is associated with ictal and interictal epileptic activity. The increase in interictal epileptic activity before arousals suggests its participation in sleep disruption. An additional increase in the spike rate during arousals may result from a sleep-wake boundary instability, suggesting a bidirectional relationship. ANN NEUROL 2020;88:907-920.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.25884 | DOI Listing |
Background: Altered network synchronization and rhythmic neural activity is observed in Alzheimer's disease (AD). Spontaneous epileptiform activity and/or seizures occur in an estimated 60% of AD cases, and having AD increases the likelihood of seizures when compared with people without dementia. Thus, network hyperexcitability can be an early feature and helpful for diagnosis and treatment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; NYU Langone Health, New York, NY, USA.
Background: Clinical and preclinical evidence suggest that abnormal electrical activity strongly impacts outcomes in Alzheimer's disease (AD). Indeed, AD patients with interictal spikes (IIS) show faster cognitive decline than those without IIS. Furthermore, seizures in patients with AD have been suggested to accelerate disease progression.
View Article and Find Full Text PDFJ Clin Neurophysiol
January 2025
Department of Intensive Care, Neuro-Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland.
Purpose: Recent research on quantitative EEG in coma has proposed several metrics correlating with consciousness level. However, the heterogeneous nature of coma can challenge the generalizability of these measures. This study investigates alpha-coma, an electroclinical pattern characterized by a widespread, nonreactive alpha rhythm often linked to poor outcomes.
View Article and Find Full Text PDFBackground: Sleep disturbances are common in Alzheimer's disease (AD) and occur at early stages. Hyperexcitability also arises during sleep and can lead to epileptiform activity and seizures that impact memory consolidation. The underlying mechanisms of sleep disturbances and hyperexcitability in AD pathology remain unclear but are likely associated with changes in brain networks and altered functional connectivity (FC).
View Article and Find Full Text PDFHealth Expect
February 2025
The Kids Research Institute Australia, Centre for Child Health Research, University of Western Australia, Perth, Australia.
Background: Appropriate support for the health of children with an intellectual disability by parents and healthcare professionals is pivotal, given the high risk of chronic conditions. However, there is limited research that has collected important insights from parents on their learnings for supporting their child's evolving healthcare needs.
Aim: This study focuses on parents' experiences and learnings from managing and supporting the health of their child with intellectual disability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!