A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-component peptide hydrogels - a systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials. | LitMetric

Peptide-based supramolecular gels can be designed to be functional "smart" materials that have applications in drug delivery, tissue engineering, and supramolecular chemistry. Although many multi-component gel systems have been designed and reported, many of these applications still rely solely on single-component gel systems which limits the functionalities of the materials. Multi-component self-assembly leads to the formation of highly ordered and complex architectures while offering the possibility to generate hydrogels with interesting properties including functional complexity and diverse morphologies. Being able to incorporate various classes of biomolecules can allow for tailoring the materials' functionalities to specific application needs. Here, a novel peptide amphiphile, myristyl-Phe-Phe (C14-FF), was synthesized and explored for hydrogel formation. The hydrogel possesses a nanofiber matrix morphology, composed of β-sheet aggregates, a record-low gelation concentration for this class of compounds, and a unique solvent-dependent helical switch. The C14-FF hydrogel was then explored with various classes of biomolecules (carbohydrates, vitamins, proteins, building blocks of HA) to generate a multi-component library of gels that have potential to represent the complex natural extracellular matrix. Selected multi-component gels exhibit an excellent compatibility with mesenchymal stem cells showing high cell viability percentages, which holds great promise for applications in regenerative therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm01104eDOI Listing

Publication Analysis

Top Keywords

gel systems
8
classes biomolecules
8
multi-component
5
multi-component peptide
4
peptide hydrogels
4
hydrogels systematic
4
systematic study
4
study incorporating
4
incorporating biomolecules
4
biomolecules exploration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!