In this work, copper selenide (CuSe umangite phase) was synthesized by two routes, using a chemical reaction and the hydrothermal method to obtain CuSe-A and CuSe-H, respectively. The synthesis of CuSe consisted of a three-step process: in the first step, copper(I) oxide hexapods (CuO) were obtained as the copper reservoir; in the second step, selenium ions were obtained from the reduction of selenium powder; and in the third step involves mixing two precursors following the two synthesis routes mentioned before. Analysis of X-ray diffraction and X-ray photoelectron spectroscopy showed the formation of the CuSe phase by both synthesis routes. On the other hand, using the scanning electron microscopy (SEM) technique, it is observed that the CuSe sample (CuSe-A) is obtained by exchanging in solution with agitation and that the copper selenium phase grows only on the surface of the hexapods. Meanwhile, the hydrothermal route promotes a total conversion of copper(I) oxide hexapods to the copper selenide phase (CuSe-H). The resulting materials were tested as photocatalytic materials to remove methylene blue dye in water under sunlight irradiation. CuSe (CuSe-H) obtained by the hydrothermal route exhibited a higher efficiency of photodegradation of dye, reaching a removal percentage of 92% after 4 h under sunlight.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439400 | PMC |
http://dx.doi.org/10.1021/acsomega.0c02299 | DOI Listing |
J Colloid Interface Sci
January 2025
Department of Chemistry, Northeast Normal University, Changchun 130024, PR China. Electronic address:
The oral administration of drugs for cancer therapy can maintain optimal blood concentrations, is biologically safe and simple, and is preferred by many patients. However, the complex lumen environment, mucus layer, and intestinal epithelial cells are biological barriers that hinder the absorption of orally administered drugs. In this study, sea urchin-like manganese-doped copper selenide nanoparticles (Mn-CuSe NPs) were designed using an anion exchange method and coated with calcium alginate and chitosan (AC) to form Mn-CuSe@AC capsules.
View Article and Find Full Text PDFSmall
January 2025
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
The properties and device applications of 2D semiconductors are highly sensitive to intrinsic structural defects due to their ultrathin nature. CuInSe (CIS) materials own excellent optoelectronic properties and ordered copper vacancies, making them widely applicable in photovoltaic and photodetection fields. However, the synthesis of 2D CIS nanoflakes remains challenging due to the nonlayered structure, multielement composition, and the competitive growth of various by-products, which further hinders the exploration of vacancy-related optoelectronic devices.
View Article and Find Full Text PDFSci Rep
January 2025
Imec, imo-imomec, Thor Park 8320, 3600, Genk, Belgium.
This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of ~ 8%-20% in simulating rack mounted setup and integrated PV systems.
View Article and Find Full Text PDFSmall
December 2024
Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.
Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.
View Article and Find Full Text PDFInorg Chem
December 2024
College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!