Large contiguous gene deletions at the distal end of the short arm of chromosome 9 result in the complex multi-organ condition chromosome 9p deletion syndrome.  A range of clinical features can result from these deletions with the most common being facial dysmorphisms and neurological impairment. Congenital hyperinsulinism is a rarely reported feature of the syndrome with the genetic mechanism for the dysregulated insulin secretion being unknown.  We studied the clinical and genetic characteristics of 12 individuals with chromosome 9p deletions who had a history of neonatal hypoglycaemia. Using off-target reads generated from targeted next-generation sequencing of the genes known to cause hyperinsulinaemic hypoglycaemia (n=9), or microarray analysis (n=3), we mapped the minimal shared deleted region on chromosome 9 in this cohort. Targeted sequencing was performed in three patients to search for a recessive mutation unmasked by the deletion. In 10/12 patients with hypoglycaemia, hyperinsulinism was confirmed biochemically. A range of extra-pancreatic features were also reported in these patients consistent with the diagnosis of the Chromosome 9p deletion syndrome. The minimal deleted region was mapped to 7.2 Mb, encompassing 38 protein-coding genes. analysis of these genes highlighted and as potential candidates for the hypoglycaemia. Targeted sequencing performed on three of the patients did not identify a second disease-causing variant within the minimal deleted region. This study identifies 9p deletions as an important cause of hyperinsulinaemic hypoglycaemia and increases the number of cases reported with 9p deletions and hypoglycaemia to 15 making this a more common feature of the syndrome than previously appreciated.  Whilst the precise genetic mechanism of the dysregulated insulin secretion could not be determined in these patients, mapping the deletion breakpoints highlighted potential candidate genes for hypoglycaemia within the deleted region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422856PMC
http://dx.doi.org/10.12688/wellcomeopenres.15465.2DOI Listing

Publication Analysis

Top Keywords

deleted region
16
chromosome deletion
12
deletion syndrome
8
feature syndrome
8
genetic mechanism
8
mechanism dysregulated
8
dysregulated insulin
8
insulin secretion
8
hyperinsulinaemic hypoglycaemia
8
targeted sequencing
8

Similar Publications

Regulation of sod1 mRNA and protein abundance by zinc in fission yeast is dependent on the CCR4-NOT complex.

J Biol Chem

January 2025

Department of Human Nutrition, Ohio State University, Columbus, OH, 43210; Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210; Center for RNA Biology, Ohio State University, Columbus, OH, 43210.

Zinc is an essential micronutrient that serves as a cofactor in a wide variety of enzymes, including Cu-Zn Superoxide Dismutase 1 (Sod1). We have discovered in Schizosaccharomyces pombe that Sod1 mRNA and protein levels are regulated in response to cellular zinc availability. We demonstrate that lower levels of Sod1 mRNA and protein accumulate under low zinc conditions, and that this regulation does not require the sod1 promoter or known factors that regulate transcription of sod1 in response to zinc and other environmental stresses.

View Article and Find Full Text PDF

The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.

View Article and Find Full Text PDF

Although various mechanisms of carbapenem-resistance have been identified in the nosocomial pathogen , the critical process of resistance evolution and the factors involved in are not well understood. Herein, we identified a universal stress protein Usp1413 which played an important role in adaptive resistance of to meropenem (MEM). Based on RNA-Seq and genome sequencing, Usp1413 was not only one of the most downregulated USPs, but also the bare one having mutation of tyrosine and glycine inserted at the site of 229-230 (YG229-230) under the stimulation of MEM.

View Article and Find Full Text PDF

The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.

View Article and Find Full Text PDF

Background: Tumor necrosis factor (TNF) is a pleiotropic cytokine that plays a critical role in the pathogenesis of immune-mediated diseases including inflammatory bowel disease (IBD). The stability of its mRNA transcript, determined in part by destabilizing sequences in its AAUU repeats (ARE) gene region, is an important regulator of its tissue and systemic levels. A deletion in the ARE region of the gene resulted in IBD and arthritis in mice and pigs, supporting a critical role for the cytokine in human IBD and several human arthritides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!