Rapid, on-site detection of fentanyl is of critical importance, as it is an extremely potent synthetic opioid that is prone to abuse. Here we describe a wearable glove-based sensor that can detect fentanyl electrochemically on the fingertips towards decentralized testing for opioids. The glove-based sensor consists of flexible screen-printed carbon electrodes modified with a mixture of multiwalled carbon nanotubes and a room temperature ionic liquid, 4-(3-butyl-1-imidazolio)-1-butanesulfonate). The sensor shows direct oxidation of fentanyl in both liquid and powder forms with a detection limit of 10 μM using square-wave voltammetry. The "Lab-on-a-Glove" sensors, combined with a portable electrochemical analyzer, provide wireless transmission of the measured data to a smartphone or tablet for further analysis. The integrated sampling and sensing methodology on the thumb and index fingers, respectively, enables rapid screening of fentanyl in the presence of a mixture of cutting agents and offers considerable promise for timely point-of-need screening for first responders. Such a glove-based "swipe, scan, sense, and alert" strategy brings chemical analytics directly to the user's fingertips and opens new possibilities for detecting substances of abuse in emergency situations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440680 | PMC |
http://dx.doi.org/10.1016/j.snb.2019.04.053 | DOI Listing |
ACS Nano
December 2024
Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human-machine interactions of robots. However, traditional contact-electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact-electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Lee Kong Chian Faculty of Engineering and Science (LKC FES), Universiti Tunku Abdul Rahman (UTAR), Selangor 43000, Malaysia.
The integration of flexible sensors into human-machine interfaces (HMIs) is in increasing demand for intuitive and effective manipulation. Traditional glove-based HMIs, constrained by nonconformal rigid structures or the need for bulky batteries, face limitations in continuous operation. Addressing this, we introduce yarn-based bend sensors in our smart glove, which are wirelessly powered and harvest energy from a fully textile 5.
View Article and Find Full Text PDFChemosphere
September 2024
Laboratório de Sensores Químicos Portáteis, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil. Electronic address:
A wearable glove-based sensor is a portable and practical approach for onsite detection/monitoring of a variety of chemical threats. Herein, we report a flexible and sensitive wearable sensor fabricated on the nitrile glove fingertips by stencil-printing technique. The working electrodes were modified with multiwalled carbon nanotubes (MWCNTs)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) for sensitive and real-time analyses of hazardous or chemical treats, as picric acid (PA) explosive, diazepam (DZ) as drug-facilitated crimes and the emerging pollutant 4-nitrophenol (4-NP).
View Article and Find Full Text PDFMikrochim Acta
April 2024
College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China.
An intelligent fluorescent nanoprobe (lignite-CDs-Eu) was constructed by an effective and facile method based on lignite-derived carbon dots (CDs) and lanthanide europium ions (Eu), which exhibited high sensitivity, low detection limit (13.35 nM) and visual color variation (from blue to red) under ultraviolet light towards tetracycline (TC) detection. Significantly, portable and economical sensors were developed using lignite-CDs-Eu immobilized fiber material of filter paper and wearable glove with the aid of color extracting and image processing application (APP) in the smartphone.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Department of Engineering, Loyola University Maryland, Baltimore, Maryland 21210, United States.
In a world increasingly driven by data, wearable triboelectric nanogenerators (TENGs) offer a convenient way to monitor and collect information about human body motions. To meet the demands of the large-scale production of wearable TENGs, material selection to realize a high conversion efficiency and simplify the fabrication process remains a challenge. To address these issues, we present a simple-structured wearable printed arc-shaped triboelectric sensor (PATS) for finger motion detection by leveraging inkjet printing technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!