Lysine acetyltransferases (KATs) catalyze acetylation of lysine residues on histones and other proteins to regulate chromatin dynamics and gene expression. KATs, such as CBP/p300, are under intense investigation as therapeutic targets due to their critical role in tumorigenesis of diverse cancers. The development of novel small molecule inhibitors targeting the histone acetyltransferase (HAT) function of KATs is challenging and requires robust assays that can validate the specificity and potency of potential inhibitors. This article outlines a pipeline of three methods that provide rigorous in vitro validation for novel HAT inhibitors (HATi). These methods include a test tube HAT assay, Chromatin Hyperacetylation Inhibition (ChHAI) assay, and Chromatin Immunoprecipitation-quantitative PCR (ChIP-qPCR). In the HAT assay, recombinant HATs are incubated with histones in a test tube reaction, allowing for acetylation of specific lysine residues on the histone tails. This reaction can be blocked by a HATi and the relative levels of site-specific histone acetylation can be measured via immunoblotting. Inhibitors identified in the HAT assay need to be confirmed in the cellular environment. The ChHAI assay uses immunoblotting to screen for novel HATi that attenuate the robust hyperacetylation of histones induced by a histone deacetylase inhibitor (HDACi). The addition of an HDACi is helpful because basal levels of histone acetylation can be difficult to detect via immunoblotting. The HAT and ChHAI assays measure global changes in histone acetylation, but do not provide information regarding acetylation at specific genomic regions. Therefore, ChIP-qPCR is used to investigate the effects of HATi on histone acetylation levels at gene regulatory elements. This is accomplished through selective immunoprecipitation of histone-DNA complexes and analysis of the purified DNA through qPCR. Together, these three assays allow for the careful validation of the specificity, potency, and mechanism of action of novel HATi.

Download full-text PDF

Source
http://dx.doi.org/10.3791/61289DOI Listing

Publication Analysis

Top Keywords

histone acetylation
16
hat assay
12
histone
8
histone acetyltransferase
8
lysine residues
8
specificity potency
8
test tube
8
assay chromatin
8
chhai assay
8
acetylation specific
8

Similar Publications

Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation.

Cell Signal

January 2025

Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:

Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.

View Article and Find Full Text PDF

Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.

Neurochem Res

January 2025

Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.

Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.

View Article and Find Full Text PDF

Impaired ARID1A expression attenuated the immune response in gastric cancer via histone acetylation.

Clin Epigenetics

January 2025

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Background: The primary objective of this study was to examine whether ARID1A mutations confer a fitness advantage to gastric cancer from an immunological perspective, along with elucidating the underlying mechanism. Additionally, we aimed to identify the clinical potential of combining epigenetic inhibitors with immune checkpoint inhibitors to improve the efficacy of immunotherapy for gastric cancer.

Methods: The correlation between ARID1A gene expression and gastric cancer patient survival was analyzed using the GEO dataset GSE62254.

View Article and Find Full Text PDF

Background: Aging is a time-dependent deterioration of physiological functions that occurs in both humans and animals. Within the brain, aging cells gradually become dysfunctional through a complex interplay of intrinsic and extrinsic factors, ultimately leading to behavioral deficits and enhanced risk of neurodegenerative diseases such as Alzheimer's disease (AD). The characteristics of normal aging are distinct from those associated with age-related diseases and it is important to understand the processes that contribute to this pathological divergence.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!