Background: Salmonella enterica serotype Typhimurium is a nontyphoidal and common foodborne pathogen that causes serious threat to humans. There is no licensed vaccine to prevent the nontyphoid bacterial infection caused by S. Typhimurium.

Methods: To develop conjugate vaccines, the bacterial lipid-A free lipopolysaccharide (LFPS) is prepared as the immunogen and used to synthesize the LFPS-linker-protein conjugates 6a-9b. The designed bifunctional linkers 1-5 comprising either an o-phenylenediamine or amine moiety are specifically attached to the exposed 3-deoxy-D-manno-octulosonic acid (Kdo), an α-ketoacid saccharide of LFPS, via condensation reaction or decarboxylative amidation. In addition to bovine serum albumin and ovalbumin, the S. Typhimurium flagellin (FliC) is also used as a self-adjuvanting protein carrier.

Results: The synthesized conjugate vaccines are characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and fast performance liquid chromatography (FPLC), and their contents of polysaccharides and protein are determined by phenol-sulfuric acid assay and bicinchoninic acid assay, respectively. Enzyme-linked immunosorbent assay (ELISA) shows that immunization of mouse with the LFPS-linker-protein vaccines at a dosage of 2.5 μg is sufficient to elicit serum immunoglobulin G (IgG) specific to S. Typhimurium lipopolysaccharide (LPS). The straight-chain amide linkers in conjugates 7a-9b do not interfere with the desired immune response. Vaccines 7a and 7b derived from either unfractionated LFPS or the high-mass portion show equal efficacy in induction of IgG antibodies. The challenge experiments are performed by oral gavage of S. Typhimurium pathogen, and vaccine 7c having FliC as the self-adjuvanting protein carrier exhibits a high vaccine efficacy of 74% with 80% mice survival rate at day 28 post the pathogen challenge.

Conclusions: This study demonstrates that lipid-A free lipopolysaccharide prepared from Gram-negative bacteria is an appropriate immunogen, in which the exposed Kdo is connected to bifunctional linkers to form conjugate vaccines. The decarboxylative amidation of Kdo is a novel and useful method to construct a relatively robust and low immunogenic straight-chain amide linkage. The vaccine efficacy is enhanced by using bacterial flagellin as the self-adjuvanting carrier protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443816PMC
http://dx.doi.org/10.1186/s12929-020-00681-8DOI Listing

Publication Analysis

Top Keywords

lipid-a free
12
free lipopolysaccharide
12
conjugate vaccines
12
bifunctional linkers
8
decarboxylative amidation
8
flic self-adjuvanting
8
self-adjuvanting protein
8
acid assay
8
straight-chain amide
8
vaccine efficacy
8

Similar Publications

The antibiotic colistin is regarded as the final line of defense for treating infections caused by Gram-negative bacteria. The combination of Raman spectroscopy (RS) with diverse machine learning methods has helped unravel the complexity of various microbiology problems. This approach offers a culture-free, rapid, and objective tool for identifying antimicrobial resistance (AMR).

View Article and Find Full Text PDF

Probing the Origins of the Disorder-to-Order Transition of a Modified Cholesterol in Ternary Lipid Bilayers.

J Am Chem Soc

October 2024

Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.

In a recent study, spectroscopic observations of modified cholesterol in both lipid-coated nanoparticles and liposomes provided evidence for a disorder-to-order orientational transition with increasing temperature. Below a critical temperature, in a membrane composed of modified cholesterol, saturated (DPPC) lipid, and anionic (DOPS) lipid, a roughly equal population of head-out and head-in conformations was observed. Surprisingly, as temperature was increased the modified cholesterol presented an abrupt transition to a population of all head-in orientations.

View Article and Find Full Text PDF

Antigen delivery via respiratory mucosal surfaces is an interesting needle-free option for vaccination. Nonetheless, it demands for the design of especially tailored formulations. Here, lipid/poly(lactic-co-glycolic) acid (PLGA) hybrid nanoparticles (hNPs) for the combined delivery of an antigen, ovalbumin (Ova), and an adjuvant, synthetic unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) motifs, is developed.

View Article and Find Full Text PDF
Article Synopsis
  • - Many bacteria have protective polysaccharide capsules made of long glycan chains, which can be free or attached to their outer membrane; the group 4 capsule in E. coli is produced by a specific gene operon.
  • - The GfcD protein, part of this operon, is believed to function as a channel for exporting lipid-anchored polysaccharide chains and has two predicted β-barrel domains that could serve as a lateral exit gate.
  • - A study using molecular dynamics showed that while the lateral aperture of GfcD remains stable, lipids do not enter the barrel, but lipid A successfully exits into the membrane, indicating how the capsule is exported.
View Article and Find Full Text PDF

Immunomodulatory agents have significant potential to enhance cancer treatment but have demonstrated limited efficacy beyond the preclinical setting owing to poor pharmacokinetics and toxicity associated with systemic administration. Conversely, when locally delivered, immunomodulatory agents require repeated administration to optimize immune stimulation. To overcome these challenges, we encapsulated the toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) within hyperbranched polyglycerol-coated biodegradable nanoparticles (NPs) engineered for gradual drug release from the NP core, resulting in a more persistent stimulation of antitumor immune responses while minimizing systemic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!