Halide perovskite (HP) materials are actively researched for resistive switching (RS) memory devices due to their current-voltage hysteresis along with low-temperature processability, superior charge mobility, and simple fabrication. In this study, all-inorganic RbPbI perovskite has been doped with Cl in the halide site and incorporated as a switching media in the Ag/RbPbICl/ITO structure, since pure RbPbI is nonswitchable. Five compositions of the RbPbICl ( = 0, 0.3, 0.6, 0.9, and 1.2) films are fabricated, and the conductivity was found to be increasing upon increase in Cl concentration, as revealed by dielectric and - measurements. The device with a 20% chloride-substituted film exhibits a higher on/off ratio, extended endurance, long retention, and high-density storage ability. Finally, a plausible explanation of the switching mechanism from iodine vacancy-mediated growth of conducting filaments (CFs) is provided using conductive atomic force microscopy (c-AFM). The c-AFM measurements reveal that pure RbPbI is insulating in nature, whereas Cl-doped films demonstrate resistive switching behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c10123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!