Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes mellitus accelerates vascular disease through multiple biochemical pathways driven by hyperglycemia, with insulin resistance and/or hyperinsulinemia also contributing. Persons with diabetes mellitus experience premature large vessel and microvascular disease when compared to normoglycemic controls. Currently there is a paucity of clinical data identifying how acutely the vasculature responds to hyperglycemia and whether other physiologic factors (e.g., vasoactive hormones) contribute. To our knowledge, no prior studies have examined the dynamic effects of acute hyperglycemia on insulin-mediated actions on both micro- and macrovascular function in the same subjects. In this randomized crossover trial, healthy young adults underwent two infusion protocols designed to compare the effects of insulin infusion during euglycemia and hyperglycemia on micro- and macrovascular function. Both euglycemic- and hyperglycemic-hyperinsulinemia increased skeletal (but not cardiac) muscle microvascular blood volume (each p<0.02) and blood flow significantly (each p<0.04), and these increases did not differ between protocols. Hyperglycemic-hyperinsulinemia trended towards increased carotid-femoral pulse wave velocity (indicating increased aortic stiffness; p= 0.065 after Bonferroni adjustment), while euglycemic-hyperinsulinemia did not. There were no changes in post-ischemic flow velocity or brachial artery flow-mediated dilation during either protocol. Plasma endothelin-1 levels significantly decreased during both protocols (each p<0.02). In this study, acute hyperglycemia for 4 hours did not inhibit insulin's ability to increase skeletal muscle microvascular perfusion but did provoke a slight increase in aortic stiffness. Hyperglycemia also did not adversely affect myocardial microvascular perfusion or endothelial function or prevent the decline of endothelin-1 during insulin infusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00300.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!