A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst. | LitMetric

Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst.

Carbohydr Polym

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

Published: November 2020

Monolithic flow reactors are widely applied in numerous reactions due to its high efficiency and good reusability, but the green and efficient fabrication of monolithic flow catalytic system is still a challenge. Herein, the cellulose monolith prepared using a facile temperature-induced phase separation method was utilized to generate and immobilize the gold nanoparticles by a continuous-flow strategy, in which the cellulose monolith served as both reducing agent and supporting material. This process was conducted at room temperature and avoided the tedious surface modification of cellulose. The obtained cellulose-Au monolith can be directly applied as a green flow reactor in both water and organic solvents, and exhibited superior catalytic efficiency and good stability. This work provides a highly efficient, scalable and sustainable strategy for developing green catalytic system based on environmentally friendly cellulose monolith materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116723DOI Listing

Publication Analysis

Top Keywords

cellulose monolith
16
gold nanoparticles
8
monolithic flow
8
efficiency good
8
catalytic system
8
cellulose
5
monolith
5
dual roles
4
roles cellulose
4
monolith continuous-flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!