The current study evaluated the effects of nano delivery of Spirulina platensis on growth performance, digestive enzymes, and biochemical, immunological, and antioxidative status, as well as resistance to Aeromonas veronii and some physical stressor challenges in Nile tilapia, Oreochromis niloticus. Three experimental fish groups (n = 270) with mean weights of 26 ± 0.30 g and mean lengths of 10 ± 0.5 cm were used; the first additive-free basal diet served as the control group, whereas the following two groups were supplemented with spirulina nanoparticles (SPNP) at 0 (control), 0.25, and 0.5%/kg diet for 4 weeks. Following the feeding trial, fish were challenged with hypoxia, cold stresses, and pathogenic bacteria (A. veronii) infection (9 × 10 CFU/ml). SPNP supplementation, especially 0.5%, (p < 0.05) significantly increased growth performance (specific growth rate % day, feed conversion ratio, and length gain rate %), immunological (plasma lysozyme and liver nitrous oxide) antioxidants (superoxide dismutase, catalase, and glutathione peroxidase in liver), biochemical (aspartate aminotransferase, alanine transaminase, glucose, and cortisol concentrations in plasma) assays, and digestive enzymes (lipase and amylase in plasma). The expression of liver's heat shock protein 70 (HSP70) and interleukin 1, beta (IL-1β) genes showed a significant upregulation outline of 0.5% SPNP > 0.25% SPNP > 0% SPNP compared with the control. Protection in the incorporated fish groups exposed to A. veronii was 100% compared with the control group, which showed 50% cumulative mortalities. In conclusion, dietary SPNP supplementation improved growth performance, antioxidant activity, immune response, digestive enzymes, related gene expression, and resistance of Nile Tilapia to hypoxia, cold, and A. veronii infection. Thus, SPNP could be used as a natural therapy for controlling those stressors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-020-00864-yDOI Listing

Publication Analysis

Top Keywords

nile tilapia
12
growth performance
12
digestive enzymes
12
tilapia oreochromis
8
oreochromis niloticus
8
aeromonas veronii
8
veronii physical
8
fish groups
8
control group
8
hypoxia cold
8

Similar Publications

() aquaculture continues to significantly contribute to the growth of the aquaculture sector in Uganda. However, its production is beset by erratic and unreliable seed supply. Also, most hatcheries practice inbreeding of broodstock, resulting in inferior seed characterized by low growth rates.

View Article and Find Full Text PDF

Enhancement of Growth, Antioxidant Activity, and Immunity in Nile Tilapia () Through Recombinant Expressing L-Gulonolactone Oxidase.

Antioxidants (Basel)

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand.

Due to its lack of the L-gulonolactone oxidase () enzyme, Nile tilapia is unable to synthesize vitamin C; thus, it requires an adequate level of exogenous vitamin C in its diet. To enhance antioxidant properties and vitamin C-related effects, we employed recombinant technology to integrate the -encoding gene into the chromosome. In this study, fish were divided into four groups: those fed with a basal diet (CON), a basal diet + vitamin C (VC), a basal diet + wild-type (BS), and a basal diet + recombinant (BS+GULO).

View Article and Find Full Text PDF

Corn and soybeans are commodities and ingredients of global interest, whose prices fluctuate based on global demands. In this sense, this study aimed to assess ora-pro-nóbis ( leaf meal (OLM) as an alternative to be included in the diets of Nile tilapia (). The optimal inclusion level of OLM in tilapia diets is investigated herein, aiming to improve their growth performance and health.

View Article and Find Full Text PDF

Uncovering the chromatin-mediated transcriptional regulatory network governing cold stress responses in fish immune cells.

J Genet Genomics

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Temperature fluctuations challenge ectothermic species, particularly tropical fish dependent on external temperatures for physiological regulation. However, the molecular mechanisms through which low-temperature stress impacts immune responses in these species, especially in relation to chromatin accessibility and epigenetic regulation, remain poorly understood. In this study, we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia (Oreochromis niloticus), a tropical fish of significant economic importance, under cold stress.

View Article and Find Full Text PDF

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!