ELABELA (ELA), a 32-residue hormone peptide abundantly expressed in adult kidneys, has been identified as a novel endogenous ligand for APJ/Apelin receptor. The aim of this study was to investigate the role of ELA in deoxycorticosterone acetate (DOCA)/salt-induced hypertension and further explore the underlying mechanism. In DOCA/salt-treated rats, the mRNA level of ELA greatly decreased in the renal medulla. Next, overexpression of ELA in the kidney was found to attenuate DOCA/salt-induced hypertension and renal injury, including lower blood pressure, reversed glomerular morphological damage, decreased blood urea nitrogen (BUN), and blocked the accumulation of fibrotic markers. Mechanistically, ELA overexpression inhibited renal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subsequent reactive oxygen species (ROS) production, thus resulted in the blockade of formation and activation of Nod-like receptor protein 3 (NLRP3) inflammasome. The inhibitory effects of ELA on Aldosterone-stimulated NADPH oxidase/ROS/NLRP3 inflammasome pathway were confirmed in the human renal tubular cells. Furthermore, our in vivo and in vitro results showed that the deficiency of the apelin receptor APJ did not influence the antihypertensive effect and blockage to NADPH oxidase/ROS/NLRP3 pathway of ELA. Moreover, in heterozygous ELA knockout mice (ELA), the ELA deficiency remarkably accelerated the onset of DOCA/salt-induced hypertension. Our data demonstrate that ELA prevents DOCA/salt-induced hypertension by inhibiting NADPH oxidase/ROS/NLRP3 pathway in the kidney, which is APJ independent. Pharmacological targeting of ELA may serve as a novel therapeutic strategy for the treatment of hypertensive kidney disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443189PMC
http://dx.doi.org/10.1038/s41419-020-02912-0DOI Listing

Publication Analysis

Top Keywords

nadph oxidase/ros/nlrp3
16
doca/salt-induced hypertension
16
ela
12
hypertension renal
8
renal injury
8
oxidase/ros/nlrp3 inflammasome
8
inflammasome pathway
8
oxidase/ros/nlrp3 pathway
8
hypertension
5
renal
5

Similar Publications

Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis.

View Article and Find Full Text PDF

Background: Previous investigations have provided limited insight into the role of oxidative stress in nasal mucosa inflammation. The aim of this study was to investigate the mechanism of oxidative stress in the epithelial cells of chronic rhinosinusitis with nasal polyps CRSwNP utilizing single-cell RNA sequencing data.

Methods: Single-cell RNA sequencing data from HRA000772 were used to assess oxidative stress, inflammasome activation, and nicotinamide adenine dinucleotide phosphate oxidases (NOXs) expression in epithelial cells via integrative rank-based gene set enrichment analysis.

View Article and Find Full Text PDF

Context: Elevated uric-acid levels in the blood are closely associated with hypertension, metabolic syndrome, diabetic nephropathy, cardiovascular diseases, and chronic kidney disease (CKD). A high-glucose diet promotes the accumulation of uric acid. Fibrosis commonly occurs in patients with late-stage type 1 or 2 diabetes and can lead to organ dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • Doxorubicin, a cancer medicine, can hurt the heart, so researchers wanted to see if a natural compound called hyperoside could help protect it.
  • They did experiments on mice and heart cells, finding that hyperoside can reduce heart damage caused by doxorubicin by stopping harmful stress in heart cells.
  • Hyperoside works mainly by blocking certain pathways and enzymes that create harmful substances (ROS) in the heart, making it a potential new treatment to protect hearts during cancer treatment.
View Article and Find Full Text PDF

Hematopoiesis is regulated by several mediators such as peptide-based growth factors, cytokines, and chemokines, whose biological effects have been studied for many years. However, several other mediators have been identified recently that affect the fate of hematopoietic stem/progenitor cells (HSPC) as well as non-hematopoietic cells in the bone marrow microenvironment. These new mediators comprise members of purinergic signaling pathways and are active mediators of the soluble arm of innate immunity, the complement cascade (ComC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!