Differences in the principal strain angles during activities performed on natural hilly terrain versus engineered surfaces.

Clin Biomech (Bristol)

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA.

Published: December 2020

Background: Tibial stress fractures in military recruits occur beginning with the fourth week of training. In and ex vivo tibial strain experiments indicate that the repetitive mechanical loading during this time may not alone be sufficient to cause stress fracture. This has led to the hypothesis that the development of tibial stress fracture is mediated by the bone remodeling response to high repetitive strains. This study assesses the differences in the strain and angle of the principal strain during military field activities versus common civilian activities.

Methods: In vivo strain measurements were made from a rosette strain gauge bonded to the midshaft of the medial tibia. Measurements of principal strains and their angles were made while performing level and inclined walking and running on an asphalt surface, while fast walking up and down stairs, while performing a standing vertical jump and while zig-zag running up and down a 30° inclined dirt hill.

Findings: The angle of the principal strain varied little (5.40° to +2.74°) during activities performed on engineered surfaces. During zig-zag running on a dirt hill the strain levels were higher (maximum shear = 4290 με). At the pivot points of zig-zag running the angle of the principal strain varied between -115° to -123° downhill and between -32.8° to -51° uphill.

Interpretation: Activities that mimic those performed by infantry recruits on irregular hilly surfaces result in higher tibial strains and have more variation in principal strain angles than activities of ordinary civilian life performed on engineered surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2020.105146DOI Listing

Publication Analysis

Top Keywords

principal strain
20
engineered surfaces
12
angle principal
12
zig-zag running
12
strain
10
strain angles
8
angles activities
8
activities performed
8
tibial stress
8
stress fracture
8

Similar Publications

Introduction: Aqueous stem bark extracts of Aspidosperma rigidum Rusby, Couroupita guianensis Aubl., Monteverdia laevis (Reissek) Biral, and Protium sagotianum Marchand have been reported as traditional remedies in several countries of the Amazonian region. Despite previous research, further investigation to characterize secondary metabolites and the biological activity of extracts is needed to derive potential applications.

View Article and Find Full Text PDF

The HIPRA-HH-2 was a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb clinical trial comparing the immunogenicity and safety of the PHH-1V adjuvanted recombinant vaccine as a heterologous booster against homologous booster with BNT162b2. Interim results demonstrated strong humoral and cellular immune response against the SARS-CoV-2 Wuhan-Hu-1 strain and the Beta, Delta, and Omicron BA.1 variants up to day 98 post-dosing.

View Article and Find Full Text PDF

Paper mulberry is a fiber resource for paper making. Washi, a traditional paper in Japan, has been produced from × , a hybrid between and . Elite strains have been vegetatively propagated and distributed within Japan.

View Article and Find Full Text PDF

The mechanical properties of multi-lithologic reservoir rock masses are complex, and the failure mechanism is not clear. This research belongs to the field of oil and gas exploration and development. Brazilian splitting, and digital image correlation (DIC) tests were performed to study the mechanical properties and failure mechanism of assemblages containing sandstone, shale, and limestone.

View Article and Find Full Text PDF

When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!