Evaluation use of bioaugmentation and biostimulation to improve degradation of sulfolane in artificial groundwater.

Chemosphere

Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan, ROC; National Yunlin University of Science and Technology, Feng Tay Distinguished Professor, Taiwan. Electronic address:

Published: January 2021

Column systems were used to evaluate the effectiveness of different bioremediation methods (biostimulation (BS) and bioaugmentation (BA)) in treating sulfolane-contaminated groundwater. Batch test results confirmed that Cupriavidus sp. Y9 (Y9) was the most effective strain for BA. The optimal ratio of added native bacteria to Y9 was 10:3. The BA column adapted to a high sulfolane concentration (150 mg L) more rapidly and had higher sulfolane removal efficiency (90%) than did the BS column. The change in the biotoxicity of sulfolane-contaminated groundwater upon bioremediation, according to a Microtox test, revealed decreases in the inhibition of the passing of light by the BS column and BS + BA column of 38% and 63%, respectively. These results reveal that combining BS with BA can reduce the biotoxicity of sulfolane. The column tests confirmed the most effective added bacterium in BA, the operating conditions for high-efficiency bioremediation, and possible problems in its future application. The results provide an important reference for the design of methods for the remediation of contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127919DOI Listing

Publication Analysis

Top Keywords

sulfolane-contaminated groundwater
8
column
6
evaluation bioaugmentation
4
bioaugmentation biostimulation
4
biostimulation improve
4
improve degradation
4
sulfolane
4
degradation sulfolane
4
sulfolane artificial
4
artificial groundwater
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!