Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2020.08.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!