A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. | LitMetric

Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones.

Biochim Biophys Acta Biomembr

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada. Electronic address:

Published: January 2021

Numerous antibiotics are known to target intracellular pathways, such as protein translation or DNA replication. Membrane transporters typically regulate drug uptake; however, little is known about direct interactions between these antibiotics and the cell membranes. Here, we studied the interactions between different aminoglycosides (kanamycin, gentamicin, streptomycin, neomycin), macrolides (azithromycin, clarithromycin, erythromycin), and fluoroquinolones (ciprofloxacin, levofloxacin) with bacterial membrane mimics to determine drug partitioning and potential drug-induced membrane disruption. The antibiotics' exact location in the bilayers and their effect on membrane thickness and fluidity were determined from high-resolution X-ray diffraction. While the antibiotics did not change membrane thickness at low (1:100 drug/lipid) or high (1:10 drug/lipid) concentrations, they were found to increase membrane disorder in a dose-dependent manner. However, no membrane damage, such as membrane disruption or pore formation, was observed for any of the antibiotics. To note, all antibiotics partitioned into the lipid head groups, while macrolides and fluoroquinolones also partitioned into the bilayer core. The results suggest that the bacterial membrane is relatively inert in the direct mechanisms of actions of these antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2020.183448DOI Listing

Publication Analysis

Top Keywords

membrane
10
macrolides fluoroquinolones
8
bacterial membrane
8
membrane disruption
8
membrane thickness
8
antibiotics
7
membrane interactions
4
interactions non-membrane
4
non-membrane targeting
4
targeting antibiotics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!