Automated total kidney volume measurements in pre-clinical magnetic resonance imaging for resourcing imaging data, annotations, and source code.

Kidney Int

Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA. Electronic address:

Published: March 2021

The objective of this study was to validate a fully automated total kidney volume measurement method for pre-clinical rodent trials that is fast, accurate, reproducible, and to provide these resources to the research community. Rodent studies that involve imaging are crucial for monitoring treatment efficacy in diseases such as polycystic kidney disease. Previous studies utilize manual or semi-automated segmentations, which are time consuming and potentially biased. To develop our automated system, a total of 150 axial magnetic resonance images (MRI) from a variety of mouse models were manually segmented and used to train/validate an automated algorithm. To test the longitudinal application of the model, four mutant and four wild-type mice were imaged sequentially over three to twelve weeks via MRI. Segmentations of the kidneys (excluding the renal pelvis) were generated by the automated method and two different readers, with one reader repeating the measurements. Similarity metrics and longitudinal analysis were calculated to assess the performance of the automated compared to the manual methods. The automated approach required no user input, besides a final visual quality control step. Similarity metrics of the automated method versus the manual segmentations were on par with inter- and intra-reader comparisons. Thus, our fully automated approach described here can be safely used in longitudinal, pre-clinical trials that involve the segmentation of rodent kidneys in T2-weighted MRIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895853PMC
http://dx.doi.org/10.1016/j.kint.2020.07.040DOI Listing

Publication Analysis

Top Keywords

automated
9
automated total
8
total kidney
8
kidney volume
8
magnetic resonance
8
fully automated
8
automated method
8
similarity metrics
8
automated approach
8
volume measurements
4

Similar Publications

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Background: To assess how centralisation of cancer services via robotic surgery influenced positive surgical margin (PSM) occurrence and its associated risk of biochemical recurrence (BCR) in cases of pT2 prostate cancer (PC).

Methods: Retrospective analysis of all radical prostatectomy (RP) cases performed in the West of Scotland during the period from January 2013 to June 2022. Primary outcomes were PSM and BCR.

View Article and Find Full Text PDF

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

Background: Effective diagnostic capacity is crucial for clinical decision-making, with up to 70% of decisions in high-resource settings based on laboratory test results. However, in low- and middle-income countries (LMIC) access to diagnostic services is often limited due to the absence of Laboratory Information Management Systems (LIMS). LIMS streamline laboratory operations by automating sample handling, analysis, and reporting, leading to improved quality and faster results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!