Pinpointing the underlying mechanisms that drive tumorigenesis in human patients is a prerequisite for identifying suitable therapeutic targets for precision medicine. In contrast to cell culture systems, mouse models are highly favored for evaluating tumor progression and therapeutic response in a more realistic in vivo context. The past decade has witnessed a dramatic increase in the number of functional genomic studies using diverse mouse models, including in vivo clustered regularly interspaced short palindromic repeats (CRISPR) and RNA interference (RNAi) screens, and these have provided a wealth of knowledge addressing multiple essential questions in translational cancer research. We compare the multiple mouse systems and genomic tools that are commonly used for in vivo screens to illustrate their strengths and limitations. Crucial components of screen design and data analysis are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trecan.2020.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!