An immortalized human adipose-derived stem cell line with highly enhanced chondrogenic properties.

Biochem Biophys Res Commun

Departments of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA. Electronic address:

Published: September 2020

Human adipose-derived stem cells (ASCs) are a commonly used cell type for cartilage tissue engineering. However, donor-to-donor variability, cell heterogeneity, inconsistent chondrogenic potential, and limited expansion potential can hinder the use of these cells for modeling chondrogenesis, in vitro screening of drugs and treatments for joint diseases, or translational applications for tissue engineered cartilage repair. The goal of this study was to create an immortalized ASC line that showed enhanced and consistent chondrogenic potential for applications in cartilage tissue engineering as well as to provide a platform for investigation of biological and mechanobiological pathways involved in cartilage homeostasis and disease. Starting with the ASC52telo cell line, a hTERT-immortalized ASC line, we used lentivirus to overexpress SOX9, a master regulator of chondrogenesis, and screened several clonal populations of SOX9 overexpressing cells to form a new stable cell line with high chondrogenic potential. One clonal line, named ASC52telo-SOX9, displayed increased GAG and type II collagen synthesis and was found to be responsive to both mechanical and inflammatory stimuli in a manner similar to native chondrocytes. The development of a clonal line such as ASC52telo-SOX9 has the potential to be a powerful tool for studying cartilage homeostasis and disease mechanisms in vitro, and potentially as a platform for in vitro drug screening for diseases that affect articular cartilage. Our findings provide an approach for the development of other immortalized cell lines with improved chondrogenic capabilities in ASCs or other adult stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052100PMC
http://dx.doi.org/10.1016/j.bbrc.2020.07.016DOI Listing

Publication Analysis

Top Keywords

chondrogenic potential
12
human adipose-derived
8
adipose-derived stem
8
stem cells
8
cartilage tissue
8
tissue engineering
8
cartilage homeostasis
8
homeostasis disease
8
cell
6
cartilage
6

Similar Publications

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.

Tissue Eng Part A

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.

View Article and Find Full Text PDF

Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.

Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.

View Article and Find Full Text PDF

This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation.

View Article and Find Full Text PDF

Small spheroids for head and neck cartilage tissue engineering.

Sci Rep

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!