Human adipose-derived stem cells (ASCs) are a commonly used cell type for cartilage tissue engineering. However, donor-to-donor variability, cell heterogeneity, inconsistent chondrogenic potential, and limited expansion potential can hinder the use of these cells for modeling chondrogenesis, in vitro screening of drugs and treatments for joint diseases, or translational applications for tissue engineered cartilage repair. The goal of this study was to create an immortalized ASC line that showed enhanced and consistent chondrogenic potential for applications in cartilage tissue engineering as well as to provide a platform for investigation of biological and mechanobiological pathways involved in cartilage homeostasis and disease. Starting with the ASC52telo cell line, a hTERT-immortalized ASC line, we used lentivirus to overexpress SOX9, a master regulator of chondrogenesis, and screened several clonal populations of SOX9 overexpressing cells to form a new stable cell line with high chondrogenic potential. One clonal line, named ASC52telo-SOX9, displayed increased GAG and type II collagen synthesis and was found to be responsive to both mechanical and inflammatory stimuli in a manner similar to native chondrocytes. The development of a clonal line such as ASC52telo-SOX9 has the potential to be a powerful tool for studying cartilage homeostasis and disease mechanisms in vitro, and potentially as a platform for in vitro drug screening for diseases that affect articular cartilage. Our findings provide an approach for the development of other immortalized cell lines with improved chondrogenic capabilities in ASCs or other adult stem cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052100 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2020.07.016 | DOI Listing |
Bone Res
January 2025
Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China;
Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.
Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.
J Orthop Res
December 2024
Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!