Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in the fine purification of drugs, including the resolution of racemates. Apart from such useful applications, site-directed mutagenesis represents an interesting approach to dissect the specific interactions between small chemicals and amino acid residues in the binding pocket. These studies can lead to design of better ligands, such as pheromone analogues with desired physico-chemical characteristics. In this chapter we examine the different uses of mutagenesis applied to OBPs and report a couple of protocols that have been successful in our hands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2020.05.014 | DOI Listing |
Folia Microbiol (Praha)
January 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biological Sciences, National University of Singapore, Singapore.
Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Basic Sciences, Bioethics and Human Life, Faculty of Human Medicine, University of Piura, Miraflores, Lima, Perú.
The anaplastic lymphoma kinase (ALK) oncoprotein plays a crucial role in non-small cell lung cancer (NSCLC) by activating signaling pathways involved in cell proliferation and survival through constitutive phosphorylation. While first-line crizotinib can regulate phosphorylation, mutations in the ALK gene can lead to resistance against ALK inhibitors (ALKi) such as ceritinib and alectinib. On the other hand, overexpression of BCL2, a protein involved in cell death regulation, has been observed in NSCLC and is considered a potential therapeutic target.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Lab of Clean Energy and Green Circulation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China.
Lipoteichoic acid synthase (LtaS) is crucial for the biosynthesis of lipoteichoic acid (LTA) in lactic acid bacteria (LAB), where LTA plays a key role in bacterial adhesion, immune modulation, and maintaining cell integrity. This study explores the regulation of LtaS activity in , examining the effects of factors such as temperature, pH, and metal ions on enzyme activity. Molecular docking was used to identify critical amino acids at the enzyme's active site, and site-directed mutagenesis confirmed the role of five key residues (Glu-259, Thr-303, Asn-353, Arg-360, and His-420) in LtaS activity.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.
Biomineralization is a green synthesis route for a variety of metal nanoparticles. Silicatein is a biomineralization protein originally found in marine sponge that converts inorganic precursors to metal oxide nanoparticles. In this work, we investigate the popular catalytic triad hypothesis and implement directed evolution with the aim to improve the solubility and kinetics of silicatein to enable increased nanoparticle synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!