This study investigated the prevalence of extraintestinal pathogenic E. coli (ExPEC)-associated sequence types (STs) from phylogenetic group B2 among 449 fluoroquinolone-susceptible dog clinical isolates from Australia. Isolates underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 317 so-identified group B2 isolates, 77 underwent whole genome sequencing (WGS), whereas the remainder underwent PCR-based screening for ST complexes (STc) STc12, STc73, STc372, and ST131. The predominant ST was ST372 according to both WGS (31 % of 77) and ST-specific PCR (22 % of 240), followed by (per WGS) ST73 (17 %), ST12 (7 %), and ST80 (7 %). A WGS-based phylogenetic comparison of ST73 isolates from dogs, cats, and humans showed considerable overall phylogenetic diversity. Although most clusters were species-specific, some contained closely related human and animal (dog > cat) isolates. For dogs in Australia these findings both confirm ST372 as the predominant E. coli clonal lineage causing extraintestinal infections and clarify the importance of human-associated group B2 lineage ST73 as a cause of UTI, with some strains possibly being capable of bi-directional (i.e., dog-human and human-dog) transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2020.108783 | DOI Listing |
Ecol Lett
January 2025
National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.
View Article and Find Full Text PDFParasitol Int
January 2025
Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, 23897-000 Seropédica, Rio de Janeiro, Brazil.
Black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) are passerine birds commonly observed in the Brazilian Atlantic Forest, Argentina and Paraguay. Tanagers are among the passerines with the highest prevalence and density of coccidian parasites, mainly due to their frugivorous feeding habits that favor fecal-oral transmission. In this context, the current study identifies a new species of Isospora Schneider, 1881 parasitizing black-goggled tanagers captured in the Itatiaia National Park, a protected area with a high degree of vulnerability in Southeastern Brazil.
View Article and Find Full Text PDFJ Infect Public Health
December 2024
Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey. Electronic address:
Background: Drug-resistant Group A beta-hemolytic streptococci remain significant infectious agents globally. This study investigated the major S. pyogenes strains responsible for infections in Türkiye and their susceptibility to beta-lactam and macrolide antibiotics.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!