The central nervous system (CNS) achieves a stable gait at several speeds and modes while controlling diverse instability. An essential feature of a gait is the motion of the center of body mass (CoM). CoM motion is at larger risk for trespassing the base of support in the mediolateral direction than in the anteroposterior direction. How the CoM trajectory in the frontal plane changes depending on the speed or mode can thus provide insights about the neural control of stable gaits. Here, we reveal the speed- and mode-dependent modulations of the trajectory by utilizing a Lissajous curve. The current study clarifies that speed-dependent modulations are evident in walking. Between walking and running, there were significant mode-dependent modulations. In contrast, there were no significant speed-dependent modulations during running. Deviations from standard tendencies quantified via Lissajous curve fitting could be a sign of gait impairments and recovery after treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2020.109947DOI Listing

Publication Analysis

Top Keywords

speed- mode-dependent
8
mode-dependent modulations
8
lissajous curve
8
speed-dependent modulations
8
mode-dependent modulation
4
modulation center
4
center mass
4
mass trajectory
4
trajectory human
4
human gaits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!