Growing evidences show that gut microbiota is associated with the pathogenesis of Parkinson's disease (PD) and the gut-brain axis can be promising target for the development of the therapeutic strategies for PD. Acupuncture has been used to improve brain functions and inflammation in neurological disorders such as PD, and to recover the gastrointestinal dysfunctions in various gastrointestinal disorders. Thus, we investigated whether acupuncture could improve Parkinsonism and gut microbial dysbiosis induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. First, we observed that acupuncture treatment at acupoints GB34 and ST36 could improve motor functions and comorbid anxiety in PD mice. Next, we found that acupuncture increased the levels of dopaminergic fibers and neurons in the striatum and the substantia nigra, respectively. Acupuncture also restored the overexpression of microglia and astrocyte as well as conversion of Bax and Bcl-2 expression in both the striatum and the substantia nigra, indicating that inflammatory responses and apoptosis were blocked by acupuncture. Additionally, via 16S rRNA sequence analysis, we observed that the relative abundance of 18 genera were changed in acupuncture-treated mice compared to the PD mice. Of them, Butyricimonas, Holdemania, Frisingicoccus, Gracilibacter, Phocea, and Aestuariispira showed significant correlations with anxiety as well as motor functions. Furthermore, the predicted functional analyses showed that acupuncture restored the physiology functions such as glutathione metabolism, methane metabolism, and PD pathway. In conclusion, we suggest that the effects of acupuncture on the enhanced motor function and the protection of the dopaminergic neurons may be associated with the regulation of the gut microbial dysbiosis and thus the inhibition of the neuroinflammation in the PD mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2020.08.015 | DOI Listing |
World J Urol
January 2025
Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer.
View Article and Find Full Text PDFFood Funct
January 2025
Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.
View Article and Find Full Text PDFAging Dis
January 2025
Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.
The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.
To study the impact of differing specific pathogen-free gut microbiomes (GMs) on a murine model of inflammatory bowel disease, selected GMs were transferred using embryo transfer (ET), cross-fostering (CF), and co-housing (CH). Prior work showed that the GM transfer method and the microbial composition of donor and recipient GMs can influence microbial colonization and disease phenotypes in dextran sodium sulfate-induced colitis. When a low richness GM was transferred to a recipient with a high richness GM via CH, the donor GM failed to successfully colonize, and a more severe disease phenotype resulted when compared to ET or CF, where colonization was successful.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!