The UTP-glucose-1-phosphate uridylyltransferase of Brucella melitensis inhibits the activation of NF-κB via regulating the bacterial type IV secretion system.

Int J Biol Macromol

State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Jilin Academy of Agricultural Sciences, Changchun 130033, China. Electronic address:

Published: December 2020

UDP-glucose pyrophosphorylase (UGPase) is an important pyrophosphatase that reversibly catalyzes the synthesis of UDP-glucose during glucose metabolism. We previously found that the deletion of UGPase may affect structure, growth, the virulence of Brucella, and the activation of cellular NF-κB. However, the exact mechanism of activation of NF-κB regulated by Brucella UGPase is still unclear. Here, we found for the first time that UGPase can regulate the expression of virB proteins (virB3, virB4, virB5, virB6, virB8, virB9, virB10, and virB11) of type IV secretion system (T4SS) as well as effectors (vceC, btpA, btpB, ricA, bspB, bspC, and bspF) of Brucella by promoting the expression of ribosomal S12 protein (rpsL), BMEI1825, and quinone of 2,4,5-trihydroxyphenylalanine (topA) proteins, and further inhibits the activation of cellular NF-κB and affects the virulence of Brucella. Our findings provide new insights into the mechanism used by Brucella to escape the immune recognition, which is expected to be of great value in the designing of Brucella vaccines and the screening of drug targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.134DOI Listing

Publication Analysis

Top Keywords

inhibits activation
8
activation nf-κb
8
type secretion
8
secretion system
8
virulence brucella
8
activation cellular
8
cellular nf-κb
8
brucella
7
utp-glucose-1-phosphate uridylyltransferase
4
uridylyltransferase brucella
4

Similar Publications

Differential effects of gestational Cannabis smoke and phytocannabinoid injections on male and female rat offspring behavior.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. Electronic address:

Our understanding of the implications of gestational Cannabis exposure (GCE) remains unclear as Cannabis use increases worldwide. Much of the existing knowledge of the effects of GCE has been gained from preclinical experiments using injections of isolated Δ-tetrahydrocannabinol (THC) at relatively high doses. Few investigations of the effects of GCE to smoke from the whole Cannabis flower have been conducted, despite this being the most common mode of human consumption.

View Article and Find Full Text PDF

(1) BACKGROUND: Metabolic abnormalities and immune inflammation are key elements within pathogenesis of pulmonary arterial hypertension (PAH). And in PAH patients, aberrant glutamine metabolism has been observed; however, the function of glutaminase 1 (GLS1) in macrophage is still unknown. So we aims to investigate GLS1's impact upon macrophages in PAH.

View Article and Find Full Text PDF

Structure-based discovery of dual-target inhibitors of the helicase from bagaza virus.

Int J Biol Macromol

January 2025

Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China. Electronic address:

Bagaza virus (BAGV) is a mosquito-borne flavivirus and has caused significant avian death in many regions, and also garnered recognition as a significant human pathogen causing diseases like encephalitis. The genome of BAGV encodes ten proteins including three structural proteins and seven nonstructural proteins. The C-terminus of the BAGV NS3 helicase serves as a helicase during BAGV replication, aiding in ATP hydrolysis and unwinding of double-stranded RNA.

View Article and Find Full Text PDF

Identification of a dual JAK3/TEC family kinase inhibitor for atopic dermatitis therapy.

Biochem Pharmacol

January 2025

Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China. Electronic address:

Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by recurrent eczematous lesions and severe itching, for which clinical treatments are limited. Selectively inhibiting Janus Kinase 3 (JAK3) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) family kinases is proposed as a promising strategy to treat AD with possible reduced side effects and enhanced efficacy. In this study, we developed a dual JAK3/TEC family kinase inhibitor ZZB, which demonstrated potent inhibitory activity with IC values of 0.

View Article and Find Full Text PDF

SENP3: Cancers and diseases.

Biochim Biophys Acta Rev Cancer

January 2025

Kunming University of Science and Technology, Medical School, Kunming 650500, China.

SUMOylation is a protein modification process that involves the covalent attachment of a small ubiquitin-like modifier (SUMO) to a specific lysine residue on the target protein. This modification can influence the function, localization, stability, and interactions of proteins, thereby regulating various cellular processes. Altering the SUMOylation of certain proteins is expected to be a potential approach for treating specific cancers and diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!