AI Article Synopsis

  • Genome-wide association studies (GWASs) have identified many genetic variants linked to osteoporosis traits like bone mineral density and fractures, but understanding their biological roles is still a challenge.
  • The study aimed to combine expression and splicing data with GWAS datasets to find new candidate genes related to osteoporosis through a transcriptome-wide association study (TWAS).
  • They identified 88 genes significantly associated with bone mineral density and fractures, with 78 genes suggested as having causal effects, including 14 new genes not previously associated with osteoporosis.

Article Abstract

Context: Though genome-wide association studies (GWASs) have identified hundreds of genetic variants associated with osteoporosis related traits, such as bone mineral density (BMD) and fracture, it remains a challenge to interpret their biological functions and underlying biological mechanisms.

Objective: Integrate diverse expression quantitative trait loci and splicing quantitative trait loci data with several powerful GWAS datasets to identify novel candidate genes associated with osteoporosis.

Design, Setting, And Participants: Here, we conducted a transcriptome-wide association study (TWAS) for total body BMD (TB-BMD) (n = 66 628 for discovery and 7697 for validation) and fracture (53 184 fracture cases and 373 611 controls for discovery and 37 857 cases and 227 116 controls for validation), respectively. We also conducted multi-SNP-based summarized mendelian randomization analysis to further validate our findings.

Results: In total, we detected 88 genes significantly associated with TB-BMD or fracture through expression or ribonucleic acid splicing. Summarized mendelian randomization analysis revealed that 78 of the significant genes may have potential causal effects on TB-BMD or fracture in at least 1 specific tissue. Among them, 64 genes have been reported in previous GWASs or TWASs for osteoporosis, such as ING3, CPED1, and WNT16, as well as 14 novel genes, such as DBF4B, GRN, TMUB2, and UNC93B1.

Conclusions: Overall, our findings provide novel insights into the pathogenesis mechanisms of osteoporosis and highlight the power of a TWAS to identify and prioritize potential causal genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736639PMC
http://dx.doi.org/10.1210/clinem/dgaa572DOI Listing

Publication Analysis

Top Keywords

genes associated
12
novel candidate
8
candidate genes
8
associated osteoporosis
8
quantitative trait
8
trait loci
8
summarized mendelian
8
mendelian randomization
8
randomization analysis
8
tb-bmd fracture
8

Similar Publications

Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line.

View Article and Find Full Text PDF

Objective: To assess the functional state and age-related characteristics of autophagy in peripheral blood leukocytes as a risk factor for the development of inflammaging using the example of the servicemen of the DefenseForces of Ukraine and clean-up workers of the Chornobyl accident.

Materials And Methods: A total of 103 male patients aged 28-77 (56,48 ∓ 9,05) years were examined. They included: the main group - 23 servicemen of the Defense Forces of Ukraine aged 44-59 (50,21 ∓ 5,13) years; the comparison group - 57 clean-up workers of the Chornobyl accident aged 56-63 (60,31 ∓ 1,78) years; and the control group -23 civilians aged 28-77 (53,26 ∓ 15,98) years.

View Article and Find Full Text PDF

Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer. It has a grim prognosis for patients, primarily because the disease often remains asymptomatic in its early stages. As a result, it is frequently diagnosed at an advanced stage, limiting treatment options.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency.

View Article and Find Full Text PDF

Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!