Cancer antigen 125 (CA125) is a widely used biomarker in monitoring of epithelial ovarian cancer (EOC). Due to insufficient cancer specificity of CA125, its diagnostic use is severely compromised. Abnormal glycosylation of CA125 is a unique feature of ovarian cancer cells and could improve differential diagnosis of the disease. Here we describe the development of a quantitative lateral flow immunoassay (LFIA) of aberrantly glycosylated CA125 which is widely superior to the conventional CA125 immunoassay (CA125IA). With a 30 min read-out time, the LFIA showed 72% sensitivity, at 98% specificity using diagnostically challenging samples with marginally elevated CA125 (35-200 U/mL), in comparison to 16% sensitivity with the CA125IA. We envision the clinical use of the developed LFIA to be based on the substantially enhanced disease specificity against the many benign conditions confounding the diagnostic evaluation and against other cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442799 | PMC |
http://dx.doi.org/10.1038/s42003-020-01191-x | DOI Listing |
Vet Parasitol
January 2025
Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China. Electronic address:
Toxoplasma gondii, an obligate intracellular protozoan, infects almost all warm-blooded animals and humans, with felines serving as its sole definitive hosts. Cats release T. gondii oocysts into the environment through feces, contributing to environmental contamination that can lead to toxoplasmosis in humans upon exposure through ingestion of contaminated food, water, or soil.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Fudan University, Shanghai, 200438, China.
Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.
View Article and Find Full Text PDFMethods Protoc
January 2025
The Center for Forensic Science Research and Education, 206 Welsh Road, Horsham, PA 19440, USA.
This differential extraction protocol details the steps for isolating DNA from sample pads used in lateral flow immunochromatographic (LFI) tests, particularly for cases involving mixed biological samples such as semen and menstrual blood, or other evidence related to sexual assault. This procedure utilizes a differential extraction technique applied to sample pads from immunochromatographic tests, where the sample pads serve as the substrate. The method involves two sequential lysis steps to effectively separate non-sperm and sperm fractions, enabling the targeted isolation of distinct cell types for downstream DNA analysis.
View Article and Find Full Text PDFFront Public Health
January 2025
Institute of Physical Education, Shanxi University, Taiyuan, China.
Objective: The objective of this study is to compare the effectiveness of low-load blood flow restriction training (LL-BFRT) to heavy-load resistance training (HL-RT) in male collegiate athletes with chronic non-specific low back pain (CNLBP).
Methods: Twenty-six participants were randomly assigned to LL-BFRT ( = 13) or HL-RT ( = 13). All participants supervised exercises (deep-squat, lateral pull-down, bench-press and machine seated crunch) cycled 4 times per week for 4 weeks (16 sessions).
Heliyon
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
This research presents a numerical study over the unsteady natural convection of an electrically conducting fluid in an open-ended vertical parallel plate microchannel under uniform and asymmetric heat flux subjected to a uniform lateral magnetic field. Slip velocity, as well as temperature jump at channel walls, are modeled using a first-order model. The effects of Knudsen number)(, heat flux ratio)rq(, Grashof number)(, and Hartmann number)M(on mass flow rate, the maximum temperature of the wall, and average Nusselt () as a function of time are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!