The accuracy of previous genetic studies in predicting polygenic psychiatric phenotypes has been limited mainly due to the limited power in distinguishing truly susceptible variants from null variants and the resulting overfitting. A novel prediction algorithm, Smooth-Threshold Multivariate Genetic Prediction (STMGP), was applied to improve the genome-based prediction of psychiatric phenotypes by decreasing overfitting through selecting variants and building a penalized regression model. Prediction models were trained using a cohort of 3685 subjects in Miyagi prefecture and validated with an independently recruited cohort of 3048 subjects in Iwate prefecture in Japan. Genotyping was performed using HumanOmniExpressExome BeadChip Arrays. We used the target phenotype of depressive symptoms and simulated phenotypes with varying complexity and various effect-size distributions of risk alleles. The prediction accuracy and the degree of overfitting of STMGP were compared with those of state-of-the-art models (polygenic risk scores, genomic best linear-unbiased prediction, summary-data-based best linear-unbiased prediction, BayesR, and ridge regression). In the prediction of depressive symptoms, compared with the other models, STMGP showed the highest prediction accuracy with the lowest degree of overfitting, although there was no significant difference in prediction accuracy. Simulation studies suggested that STMGP has a better prediction accuracy for moderately polygenic phenotypes. Our investigations suggest the potential usefulness of STMGP for predicting polygenic psychiatric conditions while avoiding overfitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442807PMC
http://dx.doi.org/10.1038/s41398-020-00957-5DOI Listing

Publication Analysis

Top Keywords

prediction accuracy
16
prediction
12
polygenic psychiatric
12
psychiatric phenotypes
12
avoiding overfitting
8
genetic prediction
8
predicting polygenic
8
depressive symptoms
8
degree overfitting
8
best linear-unbiased
8

Similar Publications

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties.

J Phys Chem Lett

January 2025

Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.

Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.

View Article and Find Full Text PDF

COX-2 Inhibitor Prediction With KNIME: A Codeless Automated Machine Learning-Based Virtual Screening Workflow.

J Comput Chem

January 2025

Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.

Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.

View Article and Find Full Text PDF

Bioinspired Smart Triboelectric Soft Pneumatic Actuator-Enabled Hand Rehabilitation Robot.

Adv Mater

January 2025

Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.

Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!