Background: There is intense interest in replacing kidneys from stem cells. It is now possible to produce, from embryonic or induced pluripotent stem cells, kidney organoids that represent immature kidneys and display some physiologic functions. However, current techniques have not yet resulted in renal tissue with a ureter, which would be needed for engineered kidneys to be clinically useful.

Methods: We used a published sequence of growth factors and drugs to induce mouse embryonic stem cells to differentiate into ureteric bud tissue. We characterized isolated engineered ureteric buds differentiated from embryonic stem cells in three-dimensional culture and grafted them into mouse kidney rudiments.

Results: Engineered ureteric buds branched in three-dimensional culture and expressed Hoxb7, a transcription factor that is part of a developmental regulatory system and a ureteric bud marker. When grafted into the cortex of kidney rudiments, engineered ureteric buds branched and induced nephron formation; when grafted into peri-Wolffian mesenchyme, still attached to a kidney rudiment or in isolation, they did not branch but instead differentiated into multilayer ureter-like epithelia displaying robust expression of the urothelial marker uroplakin. This engineered ureteric bud tissue also organized the mesenchyme into smooth muscle that spontaneously contracted, with a period a little slower than that of natural ureteric peristalsis.

Conclusions: Mouse embryonic stem cells can be differentiated into ureteric bud cells. Grafting those UB-like structures into peri-Wolffian mesenchyme of cultured kidney rudiments can induce production of urothelium and organize the mesenchyme to produce rhythmically contracting smooth muscle layers. This development may represent a significant step toward the goal of renal regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609005PMC
http://dx.doi.org/10.1681/ASN.2019101075DOI Listing

Publication Analysis

Top Keywords

ureteric bud
20
stem cells
20
embryonic stem
16
engineered ureteric
16
ureteric buds
12
ureteric
9
mouse embryonic
8
bud tissue
8
three-dimensional culture
8
buds branched
8

Similar Publications

ASH2L-Mediated H3K4 Methylation and Nephrogenesis.

J Am Soc Nephrol

January 2025

Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Zinner syndrome is an extremely uncommon congenital anomaly of the male urogenital tract. It is attributed to an embryological anomaly that arises in the distal segment of the mesonephric or Wolffian duct. It is the inadequate migration of the ureteric bud that contributes to the failure of differentiation of the metanephric blastema, which ultimately results in ipsilateral renal agenesis and atresia of the ejaculatory duct.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how tiny structures in the kidneys form during development, especially how they branch out and work together.
  • They discovered that as these structures grow, they get packed tightly together, which can change how the cells make decisions.
  • The researchers used experiments and math to understand this packing and found that it affects how the kidneys develop over time in mice and might help in creating new tissues for medical purposes.
View Article and Find Full Text PDF

The kidney maintains homeostasis through an array of parallel nephrons, which all originate in development as isolated epithelial structures that later fuse through their distal poles to a system of collecting ducts (CD). This connection is required to generate functional nephrons by providing a pathway for excretion of metabolic waste and byproducts. Currently, methods for differentiating human pluripotent stem cells into kidney organoids generate nephrons that lack CDs and instead terminate as blind-ended tubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!