The literature surrounding auditory perceptual learning and auditory training for challenging speech signals in older adult listeners is highly varied, in terms of both study methodology and reported outcomes. In this review, we discuss some of the pertinent features of listener, stimulus, and training protocol. Literature regarding the elicitation of auditory perceptual learning for time-compressed speech, non-native speech, and noise-vocoded speech is reviewed, as are auditory training protocols designed to improve speech-in-noise recognition. The literature is synthesized to establish some over-arching findings for the aging population, including an intact capacity for auditory perceptual learning, but a limited transfer of learning to untrained stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880302 | PMC |
http://dx.doi.org/10.1016/j.heares.2020.108054 | DOI Listing |
Diagnostics (Basel)
December 2024
Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
: Accurate volumetric assessment of lung nodules is an essential element of low-dose lung cancer screening programs. Current guidance recommends applying specific thresholds to measured nodule volume to make the following clinical decisions. In reality, however, CT scans often have heterogeneous slice thickness which is known to adversely impact the accuracy of nodule volume assessment.
View Article and Find Full Text PDFJpn J Radiol
January 2025
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Psychology, Chinese University of Hong Kong, Hong Kong SAR, China
The extraction and analysis of pitch underpin speech and music recognition, sound segregation, and other auditory tasks. Perceptually, pitch can be represented as a helix composed of two factors: height monotonically aligns with frequency, while chroma cyclically repeats at doubled frequencies. Although the early perceptual and neurophysiological mechanisms for extracting pitch from acoustic signals have been extensively investigated, the equally essential subsequent stages that bridge to high-level auditory cognition remain less well understood.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physiology, Anatomy and Genetics, University of Oxford.
Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity policies, realized through modulation of dopaminergic learning signals.
View Article and Find Full Text PDFJ Cogn Neurosci
December 2024
Brown University, Providence, RI.
Each day, humans must parse visual stimuli with varying amounts of perceptual experience, ranging from incredibly familiar to entirely new. Even when choosing a novel to buy at a bookstore, one sees covers they have repeatedly experienced intermixed with recently released titles. Visual exposure to stimuli has distinct neural correlates in the lateral prefrontal cortex (LPFC) of nonhuman primates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!