Background: Traumatic Brain Injury (TBI) is a leading cause of fatality and disability worldwide, partly due to the occurrence of secondary injury and late interventions. Correct diagnosis and timely monitoring ensure effective medical intervention aimed at improving clinical outcome. However, due to the limitations in size and cost of current ambulatory bioinstruments, they cannot be used to monitor patients who may still be at risk of secondary injury outside the ICU.
Methods: We propose a complete system consisting of a wearable wireless bioinstrument and a cloud-based application for real-time TBI monitoring. The bioinstrument can simultaneously record up to ten channels including both ECoG biopotential and neurochemicals (e.g. potassium, glucose and lactate), and supports various electrochemical methods including potentiometry, amperometry and cyclic voltammetry. All channels support variable gain programming to automatically tune the input dynamic range and address biosensors' falling sensitivity. The instrument is flexible and can be folded to occupy a small space behind the ear. A Bluetooth Low-Energy (BLE) receiver is used to wirelessly connect the instrument to a cloud application where the recorded data is stored, processed and visualised in real-time. Bench testing has been used to validate device performance.
Results: The instrument successfully monitored spreading depolarisations (SDs) - reproduced using a signal generator - with an SNR of 29.07 dB and NF of 0.26 dB. The potentiostat generates a wide voltage range from -1.65V to +1.65V with a resolution of 0.8mV and the sensitivity of the amperometric AFE was verified by recording 5 pA currents. Different potassium, glucose and lactate concentrations prepared in lab were accurately measured and their respective working curves were constructed. Finally,the instrument achieved a maximum sampling rate of 1.25 ksps/channel with a throughput of 105 kbps. All measurements were successfully received at the cloud.
Conclusion: The proposed instrument uniquely positions itself by presenting an aggressive optimisation of size and cost while maintaining high measurement accuracy. The system can effectively extend neuroelectrochemical monitoring to all TBI patients including those who are mobile and those who are outside the ICU. Finally, data recorded in the cloud application could be used to help diagnosis and guide rehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441655 | PMC |
http://dx.doi.org/10.1186/s12984-020-00742-x | DOI Listing |
Motivation: Artificial intelligence (AI) applications require explainability (XAI) for FAIR, ethical deployment, whether in the clinic or in the laboratory. Richly descriptive XAI metadata representing how pre-model data were obtained, characterized, transformed, and distributed, should be available along with the data prior to training and application of AI models.
Results: The FAIRSCAPE framework generates, packages, and integrates critical pre-model XAI descriptive metadata, including deep provenance graphs and data dictionaries with feature validation on uploaded data, software, and computations, with special reference to biomedical datasets.
BMC Med Inform Decis Mak
January 2025
Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, No. 36 Fangcun Mingxin Road, Liwan District, Guangzhou, 510370, China.
Background: The practical application of infectious disease emergency plans in mental health institutions during the ongoing pandemic has revealed significant shortcomings. These manifest as chaotic management of mental health care, a lack of hospital infection prevention and control (IPC) knowledge among medical staff, and unskilled practical operation. These factors result in suboptimal decision-making and emergency response execution.
View Article and Find Full Text PDFBioinformatics
January 2025
Justus Liebig University Giessen, Hesse, 35392, Germany.
MethodsX
June 2025
Department of Remote Sensing and GIS, Science and Research Branch, Islamic Azad University, Tehran, Iran.
The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the "BTR" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:-Comparing classification methods using airborne laser scanning data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Imam Khomeini Naval Science University of Nowshahr, Nowshahr, Iran.
The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!