The aims of this study were to investigate the sunlight requirements during floral initiation and differentiation for the development of flower buds in 'Autumn Bright' nectarine and to explore its source-sink relationship. In early January 2019 (111 days after full bloom), prior to floral initiation and differentiation, 12 new shoots were tagged on 14 trees, with four shoots in each of the low (0-1.2 m), middle (1.2-2.0 m), and high (>2.0 m) canopy heights. Three treatments (bud shading; leaf pluck; bud shading and leaf pluck) were applied to three shoots in each canopy height on the fourth and eighth bud, in addition to a fourth control shoot. Light penetration was measured at the different canopy heights. Buds were assessed in Spring for floral transition, number of floral buds per node, and fruit set. The treatments at the node level had no effect on floral initiation, indicating that sink strength was not promoted by additional light. Light penetration decreased with decreasing canopy height and corresponded with lower floral buds in the low zone. Fruit set was uninfluenced by all treatments. The results of this study emphasised the importance of the availability of photosynthetic assimilates for floral initiation in peach and nectarine trees. Balanced crop load management and summer pruning to enhance canopy sunlight distribution would increase the availability of nutrients for improved floral transition in this cultivar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569910PMC
http://dx.doi.org/10.3390/plants9091073DOI Listing

Publication Analysis

Top Keywords

floral initiation
16
canopy height
12
floral
8
initiation differentiation
8
canopy heights
8
bud shading
8
shading leaf
8
leaf pluck
8
light penetration
8
floral transition
8

Similar Publications

Pollination ecotypes and the origin of plant species.

Proc Biol Sci

January 2025

Centre for Functional Biodiversity, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa.

Ecological niche shifts are a key driver of phenotypic divergence and contribute to isolating barriers among lineages. For many groups of organisms, the history of these shifts and associated trait-environment correlations are well-documented at the macroevolutionary level. However, the processes that generate these patterns are initiated below the species level, often by the formation of ecotypes in contrasting environments.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.

View Article and Find Full Text PDF

Biofilm architecture and dynamics of the oral ecosystem.

BioTechnologia (Pozn)

December 2024

Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India School of Life Sciences, Sambalpur University, Burla, Odisha, India.

The oral cavity, being a nutritionally enriched environment, has been proven to be an ideal habitat for biofilm development. Various microenvironments, including dental enamel, supra- and subgingival surfaces, salivary fluid, and the dorsal surface of the tongue, harbor diverse microbes. These biofilms typically consist of four major layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!