Two cyclodextrins (CDs), γ- and hydroxypropyl (HP)-γ-CDs were used to synthesize new adsorbents by using epichlorohydrin (EPI) as cross-linking agent in order to remove Direct Red 83:1 (DR) from water. Both polymers were characterized in terms of Fourier spectroscopy, nuclear magnetic resonance, particle size distribution and thermogravimetric analysis. Experimental data for both polymers were well fitted to the pseudo-second order and intraparticle diffusion model, indicating that in the adsorption both chemical and physical interactions are essential in the removal of DR. Three different isotherm models were analyzed, concluding that γ-CDs-EPI followed the Temkin isotherm and HP-γ-CDs-EPI the Freundlich isotherm, these results suggested that the adsorption was happening onto heterogeneous surfaces. The results of the Gibbs free energy showed that the adsorption was spontaneous at room temperature. In order to eliminate the remaining dye after the polymer treatment, and advanced oxidation process (AOP) was considered, achieving more than 90% of removal combining both mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576497 | PMC |
http://dx.doi.org/10.3390/polym12091880 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!