Buccal films containing two vitamins, i.e., thiamine hydrochloride (THCl) and nicotinic acid (NA), were fabricated via two-dimensional (2D) inkjet printing. For the preparation of buccal films, solubility studies and rheological evaluations were conducted in distilled water and propylene-glycol (PG) as main solvent and viscosity/surface tension modifier, respectively. The increased solubility in the solvents' mixture indicated that manufacturing of several doses of the THCl and NA is achievable. Various doses were deposited onto sugar-sheet substrates, by increasing the number of printing passes. The physiochemical characterization (SEM, DSC, FTIR) revealed that inkjet printing does not affect the solid state of the matrix. Water uptake studies were conducted, to compare the different vitamin-loaded formulations. The in vitro release studies indicated the burst release of both vitamins within 10 min, a preferable feature for buccal administration. The in vitro permeation studies indicated that higher concentrations of the vitamins onto the sugar sheet improved the in vitro permeation performance of printed formulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558443 | PMC |
http://dx.doi.org/10.3390/ph13090203 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary.
Background/objectives: Films in the mouth offer a promising alternative drug delivery system for oral administration, with several advantages over traditional oral formulations. Furthermore, their non-invasive nature and easy administration make them conducive to increasing patient compliance. The use of active agents in these films can further improve their drug delivery properties, making them an even more useful drug delivery system.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.
View Article and Find Full Text PDFBiopolymers
January 2025
Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia.
This study aims to evaluate the impact of formulation parameters on tannic acid-crosslinked gelatine (GelTA) films, intended as a mucoadhesive matrix for extended buccal drug delivery. GelTA films were prepared using the solvent evaporation technique and screened based on their mucoadhesive and dissolution characteristics. The formulation variables included the source of gelatine (bovine and fish), tannic acid concentration, pH of the film-forming solutions, and the type and concentration of plasticisers.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark.
Buccal delivery offers a promising alternative to e.g., oral or parenteral drug administrations by leveraging the mucosal membranes of the mouth to enhance drug absorption and enhance patient compliance.
View Article and Find Full Text PDFMed Cannabis Cannabinoids
October 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, USA.
Introduction: Cannabidiol (CBD) has sparked considerable interest because of its wide range of pharmacological uses and the fact that it does not induce psychoactive effects. CBD formulation development presents significant challenges due to its limited water solubility and susceptibility to first-pass metabolism, both of which restrict its overall bioavailability. The current research aimed to use hot-melt extrusion (HME) technology to develop mucoadhesive buccal films to improve CBD solubility and reduce first-pass metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!