Milk from healthy animals has classically been considered a sterile fluid. With the development of massively parallel sequencing and its application to the study of the microbiome of different body fluids, milk microbiota has been documented in several animal species. In this study, the main objective of this work was to access bacterial profiles of healthy milk samples using the next-generation sequencing of amplicons from the 16S rRNA gene to characterise the milk microbiome of the Churra breed. A total of 212 samples were collected from two Churra dairy farms with a different management system. The core milk microbiota in Churra ewes includes lesser genera (only two taxa: Staphylococcus and Escherichia/Shigella) than studies reported in other dairy species or even in a previous study in Assaf sheep milk. We found that diversity values in the two flocks of Churra breed were lower than the diversity of the milk microbiota in Assaf. The non-metric multidimensional scaling (NMDS) ordination using Bray-Curtis distance separates samples based on their microbiota composition. The information reported here might be used to understand the complex issue of milk microbiota composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552695 | PMC |
http://dx.doi.org/10.3390/ani10091463 | DOI Listing |
Biosci Microbiota Food Health
October 2024
Division of Systems Bioengineering, Department of Bioresource and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Airag, a fermented mare's milk in Mongolia, exhibits diverse flavors and microbiota due to distinct production processes and environments in nomadic households. Recently, there has been a shift from the traditional cow skin container, 'khokhuur', to a plastic container for airag production, potentially impacting the microbiota and quality. To address this notion, we aimed to elucidate the differences in the microbiota between airag samples from a plastic container and those from a khokhuur.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China.
Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
Here, we report that small extracellular vesicles (sEVs) in milk mediate the communication between bacteria and animal kingdoms, increase the divergence of bacteria in the intestine, and alter metabolite production by bacteria. We show that bovine milk sEVs select approximately 55,000 genomic variants in 19 species of bacteria from the murine cecum . The genomic variants are transcribed into mRNA.
View Article and Find Full Text PDFBMJ Open
January 2025
School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia.
Introduction: Although evidence exists on the impact of microbiota on pregnancy outcomes in many high-resource settings, there is a lack of research in many low-resource settings like Ethiopia. This study aims to fill this gap by studying the gut and vaginal microbiota changes throughout pregnancy and assess how these changes relate to pregnancy outcomes among a cohort of pregnant women in eastern Ethiopia.
Methods And Analysis: Vaginal and stool samples will be collected using DNA/RNA Shield Collection kits three times starting at 12-22 weeks, 28-36 weeks and at birth (within 7 days).
Int J Microbiol
December 2024
Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique.
Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!