Evidence synthesizing the effects of acute body water losses on various markers of glycemic regulation, appetite, metabolism, and stress is lacking. Thus, the purpose of this review was to summarize the response of various hormonal changes involved in these physiologic functions to dehydration. A comprehensive literature search for peer-reviewed research in the databases PubMed, Scopus, CINAHL, and SportDiscus was conducted. Studies were included if they contained samples of adults (>18 years) and experimentally induced dehydration as measured by acute body mass loss. Twenty-one articles were eligible for inclusion. Findings suggested cortisol is significantly elevated with hypohydration (standard mean difference [SMD] = 1.12, 95% CI [0.583, 1.67], < 0.0001). Testosterone was significantly lower in studies where hypohydration was accompanied by caloric restriction (SMD= -1.04, 95% CI [-1.93, -0.14], = 0.02), however, there were no changes in testosterone in studies examining hypohydration alone (SMD = -0.17, 95% CI [-0.51 0.16], = 0.30). Insulin and ghrelin were unaffected by acute total body water losses. Acute hypohydration increases markers of catabolism but has a negligible effect on markers of glycemic regulation, appetite, anabolism and stress. Given the brevity of existing research, further research is needed to determine the impact of hydration on glucagon, leptin, peptide YY and the subsequent outcomes relevant to both health and performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551868PMC
http://dx.doi.org/10.3390/nu12092526DOI Listing

Publication Analysis

Top Keywords

glycemic regulation
12
regulation appetite
12
acute hypohydration
8
appetite metabolism
8
metabolism stress
8
acute body
8
body water
8
water losses
8
markers glycemic
8
acute
5

Similar Publications

Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.

View Article and Find Full Text PDF

Mechanism of Traditional Chinese medicine extract in the treatment of diabetic erectile dysfunction.

J Ethnopharmacol

January 2025

Department of Integrative Medicine and Andrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China. Electronic address:

Ethnopharmacological Relevance: Diabetic erectile dysfunction (DED) is a prevalent but often overlooked microvascular complication of type 2 diabetes mellitus (T2DM), with strong associations to cardiovascular disease. The pathophysiology of erectile dysfunction (ED) in T2DM patients is more intricate than in non-diabetic individuals, likely involving multiple pathogenic mechanisms such as endothelial dysfunction, vascular alterations, neuropathy, and oxidative stress. Traditional Chinese Medicine (TCM) has long been utilized in the management of DED, drawing on an extensive body of clinical experience.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus (GDM) poses significant risks to both maternal and fetal health, including a heightened risk of developing type 2 diabetes (T2DM) in the future. Effective management often involves dietary changes, such as food-order, where vegetables are consumed first, followed by proteins, and then carbohydrates last. This study investigates whether food sequence improves glycemic control in women with GDM by slowing carbohydrate absorption, reducing glucose spikes, and enhancing insulin sensitivity.

View Article and Find Full Text PDF

Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!