A translucent GdOS:Pr ceramic scintillator with an in-line transmittance of ~31% at 512 nm was successfully fabricated by argon-controlled sintering. The starting precipitation precursor was obtained by a chemical precipitation route at 80 °C using ammonia solution as the precipitate, followed by reduction at 1000 °C under flowing hydrogen to produce a sphere-like GdOS:Pr powder with an average particle size of ~95 nm. The GdOS:Pr phosphor particle exhibits the characteristic green emission from P→H transitions of Pr at 512 nm upon UV excitation into a broad excitation band at 285-335 nm arising from 4→45 transition of Pr. Increasing Pr concentrations induce two redshifts for the two band centers of 4→45 transition and lattice absorption on photoluminescence excitation spectra. The optimum concentration of Pr is 0.5 at.%, and the luminescence quenching type is dominated by exchange interaction. The X-ray excited luminescence spectrum of the GdOS:Pr ceramic is similar to the photoluminescence behavior of its particle. The phosphor powder and the ceramic scintillator have similar lifetimes of 2.93-2.99 μs, while the bulk material has rather higher external quantum efficiency (~37.8%) than the powder form (~27.2%).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558076 | PMC |
http://dx.doi.org/10.3390/nano10091639 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
College of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 China.
In recent years, it has become a development trend to design multi-application luminescent materials with rare earth ion doping. In this work, a series of Eu/Sm doped self-activated NaYMgVO (NYMVO) phosphors were synthesized through a simple high-temperature solid-state reaction method. Interestingly, due to the energy transfer (ET) from the matrix to the activators, the luminescence color of the phosphors changed from turquoise to orange-red and yellow-green under near-ultraviolet (n-UV) 365 nm excitation.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
Background: Schistosoma haematobium is the causative pathogen for urogenital schistosomiasis. To achieve progress towards schistosomiasis elimination, there is a critical need for developing highly sensitive and specific tools to monitor transmission in near-elimination settings. Although antibody detection is a promising approach, it is usually unable to discriminate active infections from past ones.
View Article and Find Full Text PDFiScience
January 2025
Ningbo Sunpu Led Co., Ltd., Ningbo 315000, China.
Multiple channels are designed for dimmable LED light sources with color temperatures ranging from 2,700 to 6,500 K. However, issues such as Delta uv (D) values <0, lower brightness, luminous efficacy, and color rendering index (CRI), lower power density, exceeding the standard deviation of color matching (SDCM), unconstant power, poor color consistencies, and high costs persist. We present a three-channel LED light source featuring an integrated chip-on-board (COB) package structure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Display Science and Engineering, Pukyong National University, Busan, Republic of Korea.
The influence of Eu concentration on the crystal structure and photoluminescence (PL) properties of Ca(PO):xEu (0.06 ≤ x ≤ 0.10) phosphors is systematically investigated using X-ray diffraction (XRD) Rietveld refinement, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, and PL spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!