Melatonin, a pineal gland secretion, is an amphiphilic neurohormone involved in the biological and physiologic regulation of bodily functions. Numerous studies have shown the effects of melatonin on the release of gonadotropins and their actions at one or several levels of the hypothalamic-pituitary-gonadal axis. However, direct melatonin action on gonadotropin-releasing hormone (GnRH) neurons and its mechanism of action remain unclear. Here, plasma melatonin levels were measured and the effect of melatonin on GnRH neurons was assessed using brain slice patch clamp techniques. The plasma melatonin levels in prepubertal mice were higher than those in the adults. Melatonin itself did not change the firing activity of GnRH neurons. Interestingly, the kainate receptor-mediated responses but not the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- and N-methyl-D-aspartic acid (NMDA)-induced responses were suppressed by melatonin in both the voltage clamp and current clamp modes. The inhibitory effects of the kainate-induced response by melatonin tended to increase with higher melatonin concentrations and persisted in the presence of tetrodotoxin, a voltage-sensitive Na channel blocker, or luzindole, a non-selective melatonin receptor antagonist. However, the response was completely abolished by pretreatment with pertussis toxin. These results suggest that melatonin can regulate GnRH neuronal activities in prepubertal mice by partially suppressing the excitatory signaling mediated by kainate receptors through pertussis toxin-sensitive G-protein-coupled receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504472PMC
http://dx.doi.org/10.3390/ijms21175991DOI Listing

Publication Analysis

Top Keywords

melatonin
13
prepubertal mice
12
gnrh neurons
12
kainate receptor-mediated
8
gonadotropin-releasing hormone
8
plasma melatonin
8
melatonin levels
8
melatonin suppresses
4
suppresses kainate
4
receptor-mediated excitation
4

Similar Publications

Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines.

Angew Chem Int Ed Engl

January 2025

Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.

Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu).

View Article and Find Full Text PDF

Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.

View Article and Find Full Text PDF

Purpose: Intravitreal bevacizumab has been utilized to mitigate radiation retinopathy, yet the potential role of intravitreal melatonin for its prevention remains unexplored. This study aims to evaluate and compare the efficacy of intravitreal melatonin and bevacizumab in preventing radiation retinopathy in an experimental animal model.

Materials And Methods: Twelve healthy male New Zealand white rabbits ( = 24 eyes) received a single 3000 cGy irradiation dose in both eyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!