Measures of path meander are highly relevant to studies of optimal foraging by animals. However, directly recording paths of small animals such as insects can be difficult because of small size or crepuscular activity. Computer simulations of correlated random walkers demonstrated that the rates of decay in captures across a rectangular grid of traps when movers were released at its corner can be used to produce calibration curves for quantifying path meander indirectly. Simulations using spatial parameters matching those previously documented for male codling moths ( (L.)) foraging for female pheromone plumes in the field predicted that meander, as measured in circular standard deviation (c.s.d.) of turn angles between track segments, should be ca. 50° and 30° when the target population density is high vs. low, respectively. Thus, if optimized, the mean value measured for populations encountering an unknown target density should fall between these limits. We recorded decay in catch across a 5 × 5 grid of pheromone-baited traps each separated by 15 m on 39 occasions where batches of ca. 800 males were released 10 m outside the corner of trapping grids arranged in five large Michigan apple orchards. This decay constant was translated into mean c.s.d value for path meander using the standard curve generated by the computer simulations. The measured decay constant for males was negative 0.99 ± 0.02 (S.E.M.), which translates to a path meander of 37 ± 2° c.s.d. Thus, the measured path meander of 37° fell between the 50° and 30° values optimal for dense and sparse populations, respectively. In addition to providing a rare documented example of optimal foraging for odor plumes, this research offers proof-of-concept for a novel approach to quantifying path meander of movers that could prove useful across diverse taxa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564103PMC
http://dx.doi.org/10.3390/insects11090549DOI Listing

Publication Analysis

Top Keywords

path meander
32
quantifying path
12
computer simulations
12
path
8
male codling
8
codling moths
8
moths foraging
8
pheromone plumes
8
plumes field
8
meander
8

Similar Publications

The Central Australian red honey-pot ant maintains non-cryptic ground-nesting colonies in the semi-desert habitat, performing all the activities outside the nest during the hottest periods of summer days. These ants rely on path integration and view-based cues for navigation. They manage waste by taking out unwanted food, dead nestmates, and some other wastes, typically depositing such items at distances > 5 m from the nest entrance, a process called dumping.

View Article and Find Full Text PDF

The Gulf Stream, a major ocean current in the North Atlantic ocean is a key component in the global redistribution of heat and is important for marine ecosystems. Based on 27 years (1993-2019) of wind reanalysis and satellite altimetry measurements, we present observational evidence that the path of this freely meandering jet after its separation from the continental slope at Cape Hatteras, aligns with the region of maximum cyclonic vorticity of the wind stress field known as the positive vorticity pool. This synchronicity between the wind stress curl maximum region and the Gulf Stream path is observed at multiple time-scales ranging from months to decades, spanning a distance of 1500 km between 70 and 55W.

View Article and Find Full Text PDF

Meandering flow can be formed during the advance of natural rivers by the scouring of river banks. However, this phenomenon is not common in artificial cement channels. This study used experimental scouring terrain data for a numerical simulation to study the meandering flow pattern formed between double alternating deflectors in a straight channel.

View Article and Find Full Text PDF

River bed reconstruction plays an essential part in supporting the hydrodynamic simulation and understanding the morphological processes of a river. The streamlines can be solved using Laplace equations. The equation is first numerically solved in a computational environment and then adapted to the whole considered physical field to solve the resulting streamlines in a physical domain.

View Article and Find Full Text PDF

Same but different - pseudo-pectin in the charophytic alga Chlorokybus atmophyticus.

Physiol Plant

December 2023

The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Edinburgh, UK.

All land-plant cell walls possess hemicelluloses, cellulose and anionic pectin. The walls of their cousins, the charophytic algae, exhibit some similarities to land plants' but also major differences. Charophyte 'pectins' are extractable by conventional land-plant methods, although they differ significantly in composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!