There is a huge demand for rapid, reliable and low-cost methods for the analysis of heavy metals in drinking water, particularly in the range of sub-part per billion (ppb). In the present work, we describe the preparation, characterization and analytical performance of the disposable sensor to be employed in Square Wave Anodic Stripping Voltammetry (SWASV) for ultra-trace simultaneous determination of cadmium and lead. The electrode consists of graphene paper-perfluorosulfonic ionomer-bismuth nano-composite material. The electrode preparation implies a key step aimed to enhance the Bi adsorption into nafion film, prior to the bismuth electro-deposition. Finely dispersed bismuth nanoparticles embedded in the ionomer film are obtained. The electrode was characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Electrochemical Impedance Spectroscopy (EIS). The electrode shows a linear response in the 5-100 ppb range, a time-stability tested up to almost three months, and detection limits up to 0.1 ppb for both Pb and Cd. The electrode preparation method is simple and low in cost and the obtained analytical performance is very competitive with the state of art for the SWASV determination of Pb and Cd in solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466693 | PMC |
http://dx.doi.org/10.3390/nano10081620 | DOI Listing |
Viruses
December 2024
Foundation Plant Services, University of California-Davis, Davis, CA 95616, USA.
Among the cultivated crop species, the economically and culturally important grapevine plays host to the greatest number of distinctly characterized viruses. A critical component of the management and containment of these viral diseases in grapevine is both the identification of infected vines and the characterization of new pathogens. Next-generation high-throughput sequencing technologies, i.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, 40127 Bologna, Italy.
Temporal parameters are crucial for understanding running performance, especially in elite sports environments. Traditional measurement methods are often labor-intensive and not suitable for field conditions. This study seeks to provide greater clarity in parameter estimation using a single device by comparing it to the gold standard.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Industrial Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy.
Turbomachinery engines face significant failure risks due to the combination of thermal loads and high-amplitude vibrations in turbine and compressor blades. Accurate stress distribution measurements are critical for enhancing the performance and safety of these systems. Blade tip timing (BTT) has emerged as an advanced alternative to traditional measurement methods, capturing blade dynamics by detecting deviations in blade tip arrival times through sensors mounted on the stator casing.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, PA 17837, USA.
Micropillar array electrodes offer several advantages, such as enhanced mass transport, lower detection limits, and the potential for miniaturization, making them instrumental in the design and fabrication of electrochemical biosensors. The performance of these biosensors is influenced by electrode geometry, including parameters like shape and height, which affect surface area and overall sensitivity. In this study, we designed a microfluidic electrochemical biosensor featuring micropillar array electrodes, modeled in COMSOL Multiphysics.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mobile Systems Engineering, Dankook University, Yongin 16890, Republic of Korea.
As proximity-aware services among devices such as sensors, IoT devices, and user equipment are expected to facilitate a wide range of new applications in the beyond 5G and 6G era, managing heterogeneous environments with diverse node capabilities becomes essential. This paper analytically models and characterizes the performance of heterogeneous random access-based wireless mutual broadcast (RA-WMB) with distinct transmit (Tx) power levels, leveraging a marked Poisson point process to account for nodes' various Tx power. In particular, this study enables the performance of RA-WMB with heterogeneous Tx power to be represented in terms of the performance of RA-WMB with a common Tx power by deriving an equivalent Tx power based on the probability distribution of heterogeneous Tx power and the path loss exponent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!