The mechanisms behind the reduction in muscle pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation during chronic high-fat dietary intake are poorly understood, as is the basis of CHO oxidation restoration during muscle contraction. C2C12 myotubes were treated with (300 μM) palmitate or without (control) for 16 h in the presence and absence of electrical pulse stimulation (EPS, 11.5 V, 1 Hz, 2 ms). Compared to control, palmitate reduced cell glucose uptake ( 0.05), PDC activity ( 0.01), acetylcarnitine accumulation ( 0.05) and glucose-derived mitochondrial ATP production ( 0.01) and increased pyruvate dehydrogenase kinase isoform 4 (PDK4) ( 0.01), peroxisome proliferator-activated receptor alpha (PPARα) ( 0.01) and peroxisome proliferator-activated receptor delta (PPARδ) ( 0.01) proteins, and reduced the whole-cell -FOXO1/t-FOXO1 (Forkhead Box O1) ratio ( 0.01). EPS rescued palmitate-induced inhibition of CHO oxidation, reflected by increased glucose uptake ( 0.01), PDC activity ( 0.01) and glucose-derived mitochondrial ATP production ( 0.01) compared to palmitate alone. EPS was also associated with less PDK4 ( 0.01) and PPARδ ( 0.01) proteins, and lower nuclear -FOXO1/t-FOXO1 ratio normalised to the cytoplasmic ratio, but with no changes in PPARα protein. Collectively, these data suggest PPARδ, and FOXO1 transcription factors increased PDK4 protein in the presence of palmitate, which limited PDC activity and flux, and blunted CHO oxidation and glucose uptake. Conversely, EPS rescued these metabolic events by modulating the same transcription factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460628PMC
http://dx.doi.org/10.3390/ijms21165942DOI Listing

Publication Analysis

Top Keywords

cho oxidation
20
pyruvate dehydrogenase
12
glucose uptake
12
pdc activity
12
001
11
pparδ foxo1
8
palmitate-induced inhibition
8
muscle pyruvate
8
dehydrogenase complex
8
electrical pulse
8

Similar Publications

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Electrochemical oxidative dearomatization of electron-deficient phenols using Br/Br catalysis.

Chem Commun (Camb)

January 2025

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.

An electrochemical method for the oxidative dearomatization of electron-deficient phenols by employing tetrabutylammonium bromide as a mediator under aqueous biphasic conditions is reported. This approach represents a safer alternative to the use of stoichiometric chemical oxidants and enables oxidative dearomative spirolactonization and spiroetherification reactions. Compared to previous approaches based on direct electrolysis, this strategy expands the substrate scope to electron-deficient phenols.

View Article and Find Full Text PDF

Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Introduction: Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.

Method: In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!