Hydrogen atoms play a crucial role in the aggregation of organic (bio)molecules through diverse number of noncovalent interactions that they mediate, such as electrostatic in proton transfer systems, hydrogen bonding, and CH-π interactions, to mention only the most prominent. To identify and adequately describe such low-energy interactions, increasingly sensitive methods have been developed over time, among which quantum chemical computations have witnessed impressive advances in recent years. For reaching the present state-of-the-art, computations had to rely on a pool of relevant experimental data, needed at least for validation, if not also for other purposes. In the case of molecular crystals, the best illustration for the synergy between computations and experiment is given by the so-called NMR crystallography approach. Originally designed to increase the confidence level in crystal structure determination of organic compounds from powders, NMR crystallography is able now to offer also a wealth of information regarding the noncovalent interactions that drive molecules to pack in a given crystalline pattern or another. This is particularly true for the noncovalent interactions which depend on the exact location of labile hydrogen atoms in the system: in such cases, NMR crystallography represents a valuable characterization tool, in some cases complementing even the standard single-crystal X-ray diffraction technique. A concise introduction in the field is made in this mini-review, which is aimed at providing a comprehensive picture with respect to the current accuracy level reached by NMR crystallography in the characterization of hydrogen-mediated noncovalent interactions in organic solids. Different types of practical applications are illustrated with the example of molecular crystals studied by our research group, but references to other representative developments reported in the literature are also made. By summarizing the major concepts and methodological progresses, the present work is also intended to be a guide to the practical potential of this relatively recent analytical tool for the scientists working in areas where crystal engineering represents the main approach for rational design of novel materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463941 | PMC |
http://dx.doi.org/10.3390/molecules25163757 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.
TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.
Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, U.K.
Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, . The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.
Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.
View Article and Find Full Text PDFACS Nano
January 2025
College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China.
The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!