Using a one-step thermal reduction and non-covalent chemical functionalization process, PEGylated reduced nanographene oxide (rGOn-PEG) was produced from nanographene oxide (GOn) and characterized in terms of particle size, dispersion stability, chemistry, and photothermal properties, in view of its use for photothermal therapy (PTT) of non-melanoma skin cancer. GOn infrared spectrum presented more intense bands assigned to oxygen containing functional groups than observed for rGOn-PEG. GOn C/O ratio decreased more than 50% comparing with rGOn-PEG and nitrogen was present in the latter (N % = 20.6) due to introduction of PEG-NH. Thermogravimetric analysis allowed estimating the amount of PEG in rGOn-PEG to be of about 56.1%. Simultaneous reduction and PEGylation increased the lateral dimensions from 287 ± 139 nm to 521 ± 397 nm, as observed by transmission electron microscopy and dynamic light scattering. rGOn-PEG exhibited ≈13-fold higher absorbance in the near-infrared radiation (NIR) region, as compared to unmodified GOn. Low power (150 mW cm) NIR irradiation using LEDs resulted in rGOn-PEG heating up to 47 °C, which is within the mild PTT temperature range. PEGylation strongly enhanced the dispersibility of rGOn in physiological media (phosphate buffered saline, fetal bovine serum, and cell culture medium) and also improved the biocompatibility of rGOn-PEG, in comparison to GOn (25-250 μg mL). After a single NIR LED irradiation treatment of 30 min, a decrease of ≈38% in A-431 cells viability was observed for rGOn-PEG (250 μg mL). Together, our results demonstrate the potential of irradiating rGOn-PEG using lower energy, cheaper, smaller, and safer LEDs, as alternative to high power lasers, for NIR mild hyperthermia therapy of cancer, namely non-melanoma skin cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466052 | PMC |
http://dx.doi.org/10.3390/polym12081840 | DOI Listing |
Int J Pharm
January 2025
Pharmaceutical Development of Green Innovations Group (PDGIG) Department of Industrial Pharmacy Faculty of Pharmacy Silpakorn University Nakhon Pathom Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand. Electronic address:
BMJ Open
January 2025
Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
Introduction: Long-term population-based safety studies, applying advanced causal inference techniques, including an active comparator with new-user design, are needed to investigate skin cancer outcomes among individuals with multiple sclerosis (MS) treated with fingolimod. This study aims to describe a protocol for investigating the relationship between fingolimod use and the incidence of skin cancer among individuals with MS.
Methods And Analysis: We will use population-based administrative health data from two Canadian provinces (British Columbia and Alberta) to conduct an observational cohort 'trial emulation' study with an active comparator and new-user design.
Clin Pract
January 2025
Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 800010 Galati, Romania.
Cutaneous squamous scell carcinoma (cSCC) is a frequent non-melanoma skin cancer that originates from keratinocytes with increased prevalence. cSCC can be either in situ, as in Bowen's disease, or extended. Advanced age, accumulated sun exposure, light pigmentation, and prior skin cancer diagnosis are all significant risk factors for cSCC.
View Article and Find Full Text PDFCells
January 2025
Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA.
Arsenic (As) is a risk factor for non-melanoma skin cancer (NMSC). From a six-year follow-up study on 7000 adults exposed to As, we reported the associations of single-nucleotide variation in tumor tissue and gene expression. Here, we identify the associations of small deletions (DELs) and transcriptomic profiles in NMSC.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore, 138669, Republic of Singapore.
Purpose: Basal Cell Carcinoma (BCC), the most common subtype of non-melanoma skin cancers (NMSC), is prevalent worldwide and poses significant challenges due to their increasing incidence and complex treatment considerations. Existing clinical approaches, such as Mohs micrographic surgery, are time-consuming and labour-intensive, requiring meticulous layer-by-layer excision and examination, which can significantly extend the duration of the procedure. Current optical imaging solutions also lack the necessary spatial resolution, penetration depth, and contrast for effective clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!