Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation.

Nanomaterials (Basel)

Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia.

Published: August 2020

AI Article Synopsis

  • The agricultural industry is facing challenges with pest-related declines in crop yields, prompting the need for safer, eco-friendly pesticide solutions.
  • Researchers are exploring nanotechnology to develop innovative pesticide formulations, particularly nanoemulsions, which enhance the effectiveness of traditional agrochemicals.
  • These advancements improve solubility, bioavailability, and application stability of active ingredients, aiming for more efficient pest control while minimizing environmental impact.

Article Abstract

Declines in crop yield due to pests and diseases require the development of safe, green and eco-friendly pesticide formulations. A major problem faced by the agricultural industry is the use of conventional agrochemicals that contribute broad-spectrum effects towards the environment and organisms. As a result of this issue, researchers are currently developing various pesticide formulations using different nanotechnology approaches. The progress and opportunities in developing nanoemulsions as carriers for plant protection or nanodelivery systems for agrochemicals in agricultural practice have been the subject of intense research. New unique chemical and biologic properties have resulted in a promising pesticide nanoformulations for crop protection. These innovations-particularly the nanoemulsion-based agrochemicals-are capable of enhancing the solubility of active ingredients, improving agrochemical bioavailability, and improving stability and wettability properties during the application, thus resulting in better efficacy for pest control and treatment. All of these-together with various preparation methods towards a greener and environmentally friendly agrochemicals-are also discussed and summarized in this review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466655PMC
http://dx.doi.org/10.3390/nano10081608DOI Listing

Publication Analysis

Top Keywords

pesticide formulations
8
synthesis technology
4
technology nanoemulsion-based
4
pesticide
4
nanoemulsion-based pesticide
4
pesticide formulation
4
formulation declines
4
declines crop
4
crop yield
4
yield pests
4

Similar Publications

A review on the production of nanofertilizers and its application in agriculture.

Heliyon

January 2025

Faculty of Chemical and Food Engineering, Bahir Dar Institute of technology, Bahir Dar University, P.O. Box, 26, Bahir Dar, Ethiopia.

Due to the rapid rise in the worldwide population, the need for food is expanding constantly. To boost agricultural productivity large amounts of synthetic fertilizers are used. However, the extensive use of these synthetic fertilizers leads to various environmental and health problems.

View Article and Find Full Text PDF
Article Synopsis
  • Innovative strategies are needed to combat fungal pathogens for sustainable crop protection, with traditional fungicides facing resistance issues due to their single-target action.
  • The study investigated the synergistic effects of chitosan (CS) and the fungicide azoxystrobin, finding a high synergy score that significantly improves antifungal efficacy.
  • Additionally, combining CS and azoxystrobin with RNA interference techniques enhanced fungal control, highlighting a promising eco-friendly approach and the need for further research on its molecular mechanisms.
View Article and Find Full Text PDF

In order to meet global food requirement, innovation in agricultural techniques and pesticide delivery system will be required for sustainable food supply with minimal harmful impact on environment. This article discusses the synthesis of hydrogels for use in controlled release formulations (CRFs) to increase agricultural output while reducing ecotoxicity and health risks. These hydrogels were designed by graft-copolymerization reaction of polyacrylamide and polyvinyl sulfonic acid onto agar-alginate marine polysaccharides.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

Tuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!