This paper aims to provide new insight into a method to improve the chloride ion corrosion resistance of steel fiber reinforced concrete. The steel fiber was pretreated by zinc phosphate before the preparation of the fiber reinforced concrete. Interfacial bond strength, micro-hardness and micro-morphology properties were respectively analyzed in the steel fiber reinforced concrete before and after the chloride corrosion cycle test. The results show that the chloride ion corrosion resistance of the steel fiber was enhanced by zinc phosphate treatment. Compared to plain steel fiber reinforced concrete under chloride ion corrosion, the interfacial bond strength of the concrete prepared by steel fiber with phosphating treatment increased by 15.4%. The thickness of the interface layer between the pretreated steel fiber and cement matrix was reduced by 50%. The micro-hardness of the weakest point in the interface area increased by 54.2%. The micro-morphology of the interface area was almost unchanged before and after the corrosion. The steel fiber reinforced concrete modified by zinc phosphate can not only maintain the stability of the microstructure when corroded by chloride ion but also presents good bearing capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475808PMC
http://dx.doi.org/10.3390/ma13163636DOI Listing

Publication Analysis

Top Keywords

steel fiber
36
fiber reinforced
20
reinforced concrete
20
zinc phosphate
16
chloride ion
16
corrosion resistance
12
ion corrosion
12
fiber
10
steel
9
pretreated steel
8

Similar Publications

Hydration and carbonation curing of high ferrite clinker (FePC) synthesized using EAF slag.

Low Carbon Mater Green Constr

December 2024

Faculty of Technology, Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300, 90014 Oulu, Finland.

Unlabelled: This study explores the use of Electric Arc Furnace (EAF) slag as a sustainable alternative raw material in cement clinker production. The research demonstrates the synthesis of ferrite-rich clinker using EAF slag, achieving a clinker composition of 47% alite, 32% ferrite, and 20% belite while replacing 20% of clinker raw materials i.e.

View Article and Find Full Text PDF

To improve the toughness and strength of ceramsite concrete, this study employed three different types of fibers to enhance its performance. It prepared 8 sets of specimens, conducted stress-strain curve and static strength tests, and calculated various performance parameters. Through analysis of the economic performance and failure modes, it is found that high-toughness polypropylene fibers and steel fibers significantly enhanced both the strength and toughness of ceramsite concrete, while carbon fibers, although capable of increasing strength, do not improve toughness.

View Article and Find Full Text PDF

Reinforced concrete (RC) slabs are widely used in modern building structures due to their superior properties and ease of construction. However, their mechanical properties are limited by their punching shear strength in the connection region with the columns. Researchers have attempted to add steel reinforcement in the form of studs and randomly distributed fibers to concrete slabs to improve the punching strength.

View Article and Find Full Text PDF

A Review on Multi-Scale Toughening and Regulating Methods for Modern Concrete: From Toughening Theory to Practical Engineering Application.

Research (Wash D C)

December 2024

School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, China.

Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!